Skip to main content

Mechanical Properties and Active Remodeling of Blood Vessels

  • Chapter
Biomechanics

Abstract

Blood vessels belong to the class of soft tissues discussed in Chapter 7. They do not obey Hooke’s law. Figure 7.5:1 in Chapter 7, Sec. 7.5 demonstrates the nonlinearity of the stress—strain relationship and the existence of hysteresis. They also creep under constant stress and relax under constant strain. These mechanical properties have a structural basis. In Sec. 8.2 we consider the structure of the blood vessel wall. From Sec. 8.3 on, however, our attention will be concentrated on the mathematical description of the mechanical properties. In seeking simplification whenever it is justifiable, we take advantage of the fact that most blood vessels are thin-walled tubes deforming axisymmetrically (including inflation, longitudinal stretching, and torsion), and that as far as hemodynamics is concerned, we need to know only the relationship between the blood pressure and the inner diameter of the tube. In this situation we may treat the vessel wall as a membrane. The stresses of concern are circumferential and longitudinal, the principal strains are also circumferential and longitudinal. The vessel wall may be treated as a two-dimensional body, the constitutive equation is biaxial. In Secs. 8.3–8.5, we formulate a two-dimensional quasi-linear viscoelastic constitutive equation for blood vessels, using the pseudo-elasticity concept introduced in Chapter 7. In Secs. 8.7 and 8.8, we treat the blood vessel wall as a three-dimensional body, and study the differences between the mechanical properties of the intima-media layer and those of the adventitia. The results can then be applied to general three-dimensional problems such as bifurcation, aneurysm, surgery, etc. In Secs. 8.9–8.11, we consider the mechanical properties of arterioles, capillary blood vessels, and veins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Tinawi, A., Madden, J. A., Dawson, C. A., Linehan, J. H., Harder, D. R., and Rickaby, D. A. (1991) Distensibility of small arteries of the dog lung. J. Appl. Physiol, 71 1714–1722.

    PubMed  CAS  Google Scholar 

  • Anliker, M. (1972) Toward a nontraumatic study of the circulatory system. In Bio-mechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ, pp. 337–380.

    Google Scholar 

  • Anliker, M., Histand, M. B., and Ogden, E. (1968) Dispersion and attenuation of small artificial pressure waves in the canine aorta. Circulation Res. 23, 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Anliker, M., Wells, M. K., and Ogden, E. (1969) The transmission characteristics of large and small pressure waves in the abdominal vena cava. IEEE Trans. Biomed. Eng. BME-16, 262–273.

    Google Scholar 

  • Ayorinde, O. A., Kobayashi, A. S., and Merati, J. K. (1975) Finite elasticity analysis of unanesthetized and anesthetized aorta. In 1975 Biomechanics Symposium. ASME, New York, p. 79.

    Google Scholar 

  • Azuma, T., Hasegawa, M., and Matsuda, T. (1970) Rheological properties of large arteries. In Proceedings of the 5th International Congress on Rheology, S. Onogi (ed.) University of Tokyo Press, Tokyo and University Part Press, Baltimore, pp. 129–141.

    Google Scholar 

  • Azuma, T. and Hasegawa, M. (1971) A rheological approach to the architecture of arterial walls. Jpn. J. Physiol. 21, 27–47.

    Article  PubMed  CAS  Google Scholar 

  • Azuma, T. and Hasegawa, M. (1973) Distensibility of the vein: From the architectural point of view. Biorheology 10, 469–479.

    PubMed  CAS  Google Scholar 

  • Baez, S., Lamport, H., and Baez, A. (1960) Pressure effects in living microscopic vessels. In Flow Properties of Blood and Other Biological Systems, A. L. Copley and G. Stainsby (eds.) Pergamon Press, Oxford, pp. 122–136.

    Google Scholar 

  • Baldwin, A. L. and Gore, R. W. (1989) Simultaneous measurement of capillary distensibility and hydraulic conductance. Microvasc. Res. 38, 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, R. D. and Pasch, T. (1971) The quasistatic and dynamic circumferential elastic modulus of the rat tail artery studied at various wall stresses and tones of the vascular smooth muscle. Pflügers Arch. 330, 335–346.

    Article  PubMed  CAS  Google Scholar 

  • Bergel, D. H. (1972) The properties of blood vessels. In Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ, Chapter 5, pp. 105–140.

    Google Scholar 

  • Bevan, J. A., Bevan, R. D., Chang, P. C., Pegram, B. L., Purdy, R. E., and Su, C. (1975) Analysis of changes in reactivity of rabbit arteries and veins 2 weeks after induction of hypertension by co-arctation of the abdominal aorta. Circulation Res. 37, 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, R. D. (1976) Auto radiographic and pathological study of cellular proliferation in rabbit arteries correlated with an increase in arterial pressure. Blood Vessels 13, 100–124.

    PubMed  CAS  Google Scholar 

  • Bohr, D. F., Somlyo, A. P., and Sparks, H. V., Jr. (eds.) (1980) Handbook of Physiology. Sec. 2 The Cardiovascular System. Vol 2: Vascular Smooth Muscle. American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Bouskela, E. and Wiederhielm, C. (1979a) Viscoelastic properties of capillaries. (Abstract) Microvascu. Res. 17, No. 3, Part 2, p. Si.

    Google Scholar 

  • Bouskela, E. and Wiederhielm, C. A. (1979b) Microvascular myogenic reaction in the wing of the intact unanesthetized bat. Am. J. Physiol. 237, H59 — H65.

    PubMed  CAS  Google Scholar 

  • Brankov, G., Rachev, A., and Stoychev, S. (1974) On the mechanical behavior of blood vessels. Biomechanica (Bulgarian Academy of Sciences, Sofia) 1, 27–35.

    Google Scholar 

  • Brankov, G., Rachev, A., and Stoychev, S. (1976) A structural model of arterial vessel. Biomechanica (Bulgarian Academy of Sciences, Sofia) 3, 3–11.

    Google Scholar 

  • Burton, A. C. (1944) Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34, 619–642.

    Google Scholar 

  • Burton, A. C. (1947) The physical equilibrium of small blood vessels. Am. J. Physiol. 149, 389–399. See also, ibid, 164, 319.

    Google Scholar 

  • Burton, A. C. (1962) Properties of smooth muscle and regulation of circulation. Physiol. Rev. 42, 1-6.

    Google Scholar 

  • Burton, A. C. (1966) Role of geometry, size, and shape in the microcirculation. Fed. Proc. 25, 1753–1760.

    PubMed  CAS  Google Scholar 

  • Campbell, J. H. and Campbell, G. R. (1988) Vascular Smooth Muscle in Culture, 2 Vols. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Carew, T. E., Vaishnav, R. N., and Patel, D. J. (1968) Compressibility of the arterial wall. Circulation Res. 23, 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A. (1978) The Mechanics of the Circulation. Oxford University Press, Oxford, 1978.

    Google Scholar 

  • Cheung, J. B. and Hsiao, C. C. (1972) Nonlinear anisotropic viscoelastic stresses in blood vessels. J. Biomech. 5, 607–619.

    Article  PubMed  CAS  Google Scholar 

  • Chuong, C. J. and Fung, Y. C. (1983) Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105, 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Chuong, C. J. and Fung, Y. C. (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17, 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Chuong, C. J. and Fung, Y. C. (1986) Residual stress in arteries. In Frontiers in Biomechanics G. W. Schmid-Schönbein, S. L.-Y. Woo, and B. W. Zweifach. Springer-Verlag, New York, pp. 117–129. Also J. Biomech. Eng. 108, 189–192.

    Google Scholar 

  • Collins, R. and W. C. L. Hu (1972) Dynamic deformation experiments on aortic tissue. J. Biomech. 5, 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, M. J. and Crystal, R. G. (1975) Lung growth after unilateral pneumonectomy: Quantiation of collagen synthesis and content. Am. Rev. Respir. Disease 111, 267–276.

    CAS  Google Scholar 

  • Cox, R. H., Jones, A. W., and Fischer, G. M. (1974) Carotid artery mechanics, connec- tive tissue, and electrolyte changes in puppies. Am. J. Physiol. 227, 563–568.

    PubMed  CAS  Google Scholar 

  • Cox, R. H. (1974) Three-dimensional mechanics of arterial segments in vitro: Method. J. Appl. Physiol. 36, 381–384.

    PubMed  CAS  Google Scholar 

  • Cox, R. H. (1976a) Mechanics of canine iliac artery smooth muscle in vitro. Am. J. Physiol. 230, 462–470.

    PubMed  CAS  Google Scholar 

  • Cox, R. H. (1976b) Effect of norepinephrine on mechanics of arteries in vitro. Am. J. Physiol. 231, 420–425, 1976; 233, H243 — H255, 1977.

    Google Scholar 

  • Cox, R. H. (1978) Comparison of carotid artery mechanics in the rat, rabbit, and dog. Am. J. Physiol. 234, H280 — H288.

    PubMed  CAS  Google Scholar 

  • Cox, R. H. (1979a) Alterations in active and passive mechanics of rate carotid artery with experimental hypertension. Am. J. Physiol. 237, H597 — H605.

    PubMed  CAS  Google Scholar 

  • Cox, R. H. (1979b) Regional, species, and age related variations in the mechanical properties of arteries. Biorheology 16, 85–94.

    PubMed  CAS  Google Scholar 

  • Cox, R. H. (1982) Mechanical properties of the coronary vascular wall and the contractile process. In The Coronary Artery, S. Kalsner (eds.) Oxford University Press, New York, pp. 59–90.

    Google Scholar 

  • Crystal, R. G. (1974) Lung collagen: Definition, diversity, and development. Fed. Proc. 33, 2248–2255.

    PubMed  CAS  Google Scholar 

  • Debes, J. C. (1992) Mechanics of Pulmonary Parenchyma and Arteries. Ph.D. Thesis. University of California, San Diego.

    Google Scholar 

  • Debes, J. C. and Fung, Y. C. (1992) Effect of temperature on the biaxial mechanics of excised lung parenchyma of the dog. J. Appl. Physiol. 73, 1171–1180.

    PubMed  CAS  Google Scholar 

  • Demiray, H. J. (1972) A note on the elasticity of soft biological tissues. J. Biomech. 5, 309–311.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J. M. and Dobrin, P. B. (1971) Finite deformation analysis of the relaxed and contracted dog carotid artery. Microvasc. Res. 3, 400–415.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J. M. and Dobrin, P. B. (1973) Stress gradients in the walls of large arteries. J. Biomech. 6, 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Faulkner, J. A., Weiss, S. W., and McGeachie, J. K. (1983) Revascularization of skeletal muscle transplanted into the hamster cheek pouch: Intravital and light microscopy. Microvasc. Res. 26, 49–64.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, G. M. and Llaurado, J. G. (1967) Connective tissue composition of canine arteries. Effects of renal hypertension. Arch. Pathol. 84, 95–98.

    Google Scholar 

  • Folkman, J. (1985) Tumor angiogenesis. Adv. Cancer Res. 43, 175–203. Frank, O. (1920) Die elastizitat der blutgefasse J. Biol. 71, 255–272.

    Google Scholar 

  • Frasher, W. G. (1966) What is known about large blood vessels. In Biomechanics, Proc. Symp. Y. C. Fung (ed.) ASME, New York, pp. 1–19.

    Google Scholar 

  • Fronek, K., Schmid-Schönbein, G., and Fung, Y. C. (1976) A noncontact method for three-dimensional analysis of vascular elasticity in vivo and in vitro. J. Appl. Physiol. 40, 634–637.

    CAS  Google Scholar 

  • Fry, D. L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circulation Res. 22, 165–197.

    Article  PubMed  CAS  Google Scholar 

  • Fry, D. L. (1969) Certain histological and chemical responses of the vascular interface of acutely induced mechanical stress in the aorta of the dog. Circulation Res. 24, 93–108.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1966a) Microscopic blood bessels in the mesentery. In Biomechanics, Proc. Symp. Y. C. Fung (ed.) ASME, New York, pp. 151–166.

    Google Scholar 

  • Fung, Y. C. (1966b) Theoretical considerations of the elasticity of red cells and small blood vessels. Fed. Proc. 25, 1761–1772.

    PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1967) Elasticity of soft tissues in simple elongation. Am. J. Physiol. 28, 1532–1544.

    Google Scholar 

  • Fung, Y. C. (1972) Stress—strain-history relations of soft tissues in simple elongation. In Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ, pp. 181–208.

    Google Scholar 

  • Fung, Y. C. (1973) Biorheology of soft tissues. Biorheology 10, 139–155.

    PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1979) Inversion of a class of nonlinear stress—strain relationships of biological soft tissues. J. Biomech. Eng. 101, 23–27.

    Article  Google Scholar 

  • Fung, Y. C. (1983) What principle governs the stress distribution in living organisms. In Biomechanics in China, Japan, and USA Y. C. Fung, E. Fakada, and J. J. Wang (eds.) Science Press, Beijing, China, pp. 1–13.

    Google Scholar 

  • Fung, Y. C. (1984) Biodynamics: Circulation. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y. C. (1984) The need for a new hypothesis for residual stress distribution. In Biodynamics: Circulation. loc cit, pp. 54–68.

    Google Scholar 

  • Fung, Y. C. (1990) Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y. C., Zweifach, B. W., and Intaglietta, M. (1966) Elastic environment of the capillary bed. Circulation Res. 19, 441–461.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y. C. and Sobin, S. S. (1972) Elasticity of the pulmonary alveolar sheet. Circulation Res. 30, 451–469; 470–490.

    Google Scholar 

  • Fung, Y. C., Fronek, K., and Patitucci, P. (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237, H620 — H631.

    PubMed  CAS  Google Scholar 

  • Fung, Y. C. and Liu, S. Q. (1989) Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circulation Res. 65, 1340 1349.

    Google Scholar 

  • Fung, Y. C. and Liu, S. Q. (1991) Changes of zero stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70, 2455–2470.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y. C. and Liu, S. Q. (1992) Strain distribution in small blood vessels with zero stress state taken into consideration. Am. J. Physiol. 262, H544 — H552.

    PubMed  CAS  Google Scholar 

  • Gaehtgens, P. and Uekermann, U. (1971) The distensibility of mesenteric venous microvessels. Pflügers Arch. 330, 206–216.

    Article  PubMed  CAS  Google Scholar 

  • Gore, R. W. (1972) Wall stress: A determinant of regional differences in response of frog microvessels to norepinephrine. Am. J. Physiol. 222, 82–91.

    PubMed  CAS  Google Scholar 

  • Gore, R. W. (1974) Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure. Circulation Res. 34, 581–591.

    Article  PubMed  CAS  Google Scholar 

  • Gore, R. W. and Davis, M. J. (1984) Mechanics of smooth muscle in isolated single microvessels. Ann. Biomed. Eng. 12, 511–520.

    Article  PubMed  CAS  Google Scholar 

  • Gou, P. F. (1970) Strain-energy function for biological tissues. J. Biomech. 3, 547–550.

    Article  PubMed  CAS  Google Scholar 

  • Gow, B. S. and Taylor, M. G. (1968) Measurement of viscoelastic properties of arteries in the living dog. Circulation Res. 23, 111–122.

    Article  PubMed  CAS  Google Scholar 

  • Han, H. C. and Fung, Y. C. (1991) Species dependence on the zero stress state of aorta: Pig vs. rat. J. Biomech. Eng. 113, 446–451.

    Article  PubMed  CAS  Google Scholar 

  • Hardung, V. (1953) Vergleichende messungen der dynamischen elastizitat und viskositat von blutegefassen, Kautschuk und synthetischen elastomeren. Hely. Physiol. Pharmacol. Acta 11, 194–211.

    CAS  Google Scholar 

  • Harkness, M. L. R., Harkness, R. D., and McDonald, D. A. (1957) The collagen and elastin content of the arterial wall in the dog. Proc. Roy. Soc. London B 1465, 541–551.

    Article  Google Scholar 

  • Hayashi, K., Handa, H., Mori, K., and Moritake, K. (1971) Mechanical behavior of vascular walls. J. Soc. Mater. Sci. (Jpn.) 20, 1001–1011.

    Google Scholar 

  • Hayashi, K., Sato, M., Handa, H., and Moritake, K. (1974) Biomechanical study of the constitutive laws of vascular walls. Exper. Mech. 14, 440–444.

    Article  Google Scholar 

  • Hayashi, K., Nagasawa, S., Nario, Y., Okumura, A., Moritake, K., and Handa, H. (1980) Mechanical properties of human cerebral arteries. Biorheology 17, 211–218.

    PubMed  CAS  Google Scholar 

  • Hayashi, K. and Takamizawa, K. (1989) Stress and strain distributions and residual stresses in arterial walls. In Progress and New Directions of Biomechanics, Y. C. Fung, K. Hayashi, and Y. Seguchi (eds.) MITA Press, Tokyo, Japan, pp. 185–192.

    Google Scholar 

  • Imholz, B. P. M., Wieling, W., Langewouters, G. J., and van Montfrans, G. A. (1991) Continuous finger arterial pressure: Utility in the cardiovascular Laboratory. Clinical Autonomic Res. 1, 43–53.

    Article  CAS  Google Scholar 

  • Intaglietta, M. and Plomb, E. P. (1973) Fluid exchange in tunnel and tube capillaries. Microvasc. Res. 7, 153–168.

    Article  Google Scholar 

  • Intaglietta, M. and Zweifach, B. W. (1971) Geometrical model of the microvasculature of rabbit omentum from in vivo measurements. Circulation Res. 28, 593–600.

    Google Scholar 

  • Johnson, P. C. (1968) Autoregulatory responses of cat mesenteric arterioles measured in vivo. Circulation Res. 22, 199–212.

    Article  CAS  Google Scholar 

  • Johnson, P. C. (1980) The Myogenic Response. In Bohr. (1980) loc. cit., pp. 409–442.

    Google Scholar 

  • Kasyanov, V. (1974) The anisotropic nonlinear model of human large blood vessels. Mech. Polym. USSR 874–884.

    Google Scholar 

  • Kasyanov, V. and Knets, I. (1974) Strain-energy function for large human blood vessels Mech. Polym. USSR 122–128.

    Google Scholar 

  • Kenner, T. (1967) Neue gesichtspunkte and experimente zur beschreibung and messung der arterienelastizitat. Arch. Kreislaufforschung 54, 68–139.

    Article  CAS  Google Scholar 

  • Langewouters, G. J., Wesseling, K. H., and Goedhard, W. J. A. (1984) The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J. Biomech. 17, 425–435. See also, ibid., 8, 613–620, 1985.

    Google Scholar 

  • Laszt, L. (1968) Untersuchungen uber die elastischen eigenschaften der blutegasse um ruhe-und im kontraktionszustand. Angiologica 5, 14–27.

    PubMed  CAS  Google Scholar 

  • Lee, J. S., Frasher, W. G., and Fung, Y. C. (1967) Two-dimensional finite deformation experiments on dog’s arteries and veins. Rept. No. AFOSR 67–00198, Dept. of Applied Mechanics and Engineering Science—Bioengineering, University of California, San Diego, California.

    Google Scholar 

  • Lee, J. S., Frasher, W. G., and Fung, Y. C. (1968) Comparison of the elasticity of an artery in vivo and in excision. J. Appl. Physiol. 25, 799–801.

    PubMed  CAS  Google Scholar 

  • Lee, Robert M. K. (ed.) (1989) Blood Vessel Changes in Hypertension: Structure and Function, Vol. 1 (with articles by R. Cox, H. Ho, M. Kay, M. Mulvany, G. Owens, and C. Triggle). 199 pp., Vol. 2 (T. J. F. Lee, G. Osol, A. L. Loeb and M. J. Peach, R. L. Prewitt, H. Hashimoto and D. L. Stacy, J. H. Lombard, M. J. Mackay, D. W. Cheung, W. J. Stekiel). 177 pp., Vol. 2, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Litwak, P., Ward, R. S., Robinson, A. J., Yilgor, I., and Spatz, C. A. (1988) Development of a small diameter, compliant vascular prosthesis. In Tissue Engineering, R. Skalak and C. F. Fox (eds.) Alan Liss, New York, pp. 25–30.

    Google Scholar 

  • Liu, S. Q. and Fung, Y. C. (1988) Zero stress states of arteries. J. Biomech. Eng. 110, 82–84.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. Q. and Fung, Y. C. (1989) Relationship between hypertension, hypertrophy, and opening angle of zero stress state of arteries following aortic constriction. J. Biomech. Eng. 111, 325–335.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. Q. and Fung, Y. C. (1990) Change of zero stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. Submitted.

    Google Scholar 

  • Liu, S. Q. and Fung, Y. C. (1992) Influence of STZ-induced diabetes on zero stress states of rat pulmonary and systemic arteries. Diabetes 41, 136–146.

    Article  PubMed  CAS  Google Scholar 

  • Maltzahn, W.-W. von, Besdo, D., and Wiemer, W. (1981) Elastic properties of arteries: A nonlinear two-layer cylindrical model. J. Biomech. 14, 389–397.

    Article  Google Scholar 

  • Maltzahn, W. W., Warrinyar, R. G., and Keitzer, W. F. (1984) Experimental measurement soft elastic properties of media and adventitia of bovine carotid arteries. J. Biomech. 17, 839–848.

    Article  Google Scholar 

  • Marquardt, D. W. (1963) An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 2, 431–441.

    Google Scholar 

  • Mathieu-Costello, O. and Fronek, K. (1985) Morphometry of the amount of smooth muscle cells in the media of various rabbit arteries. J. Ultrastruct. Res. 91, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, M., Fung, Y. C., and Sobin, S. S. (1987) Collagen and elastin fibers in human pulmonary alveolar mouths and ducts. J. Appl. Physiol. 63, 1185–1194.

    PubMed  CAS  Google Scholar 

  • McDonald, D. A. (1968) Regional pulse-wave velocity in the arterial tree. J. Appl. Physiol. 24, 73–78.

    PubMed  CAS  Google Scholar 

  • Mercer, R. R. and Crapo, J. D. (1990) Spatial distribution of collagen and elastin fibers in the lung. J. Appl. Physiol. 69, 756–765.

    PubMed  CAS  Google Scholar 

  • Meyrick, B. and Reid, L. (1980) Hypoxia-induced structural changes in the media and adventitia of the rat hiller pulmonary artery and their regression. Am J. Pathol. 100, 151–178.

    PubMed  CAS  Google Scholar 

  • Mirsky, I. (1973) Ventricular and arterial wall stresses based on large deformation theories. Biophys. J. 13, 1141–1159.

    Article  PubMed  CAS  Google Scholar 

  • Moritake, K., Handa, H., Hayashi, K., and Sato, M. (1973) Experimental studies of intracranial aneurysms. Some biomechanical considerations of the wall structures of intracranial aneurysms and experimentally produced aneurysms. Jpn. J. Brain Surg. 1, 115–123.

    Google Scholar 

  • Murphy, R. A. (1980) Mechanics of vascular smooth muscle. In Handbook of Physiology. American Physiological Society, Bethesda, MD, Sec. 2, Vol. 2, pp. 325–351.

    Google Scholar 

  • Nagasawa, S., Handa, H., Nario, Y., Okumura, A., Moritake, K., and Hayaski, K. (1982) Biomechanical study on aging changes and vasospasm of human cerebral arteries. Biorheology 19, 481–489.

    PubMed  CAS  Google Scholar 

  • Nerem, R. M. (1988) Endothelial cell responses to shear stress: Implications in the development of endothelialized synthetic vascular grafts. In Tissue Engineering, R. Skalak and C. F. Fox (eds.) Alan Liss, New York, pp. 5–10.

    Google Scholar 

  • Patel, D. J. and Vaishnav, R. N. (1972) The rheology of large blood vessels. In Cardiovascular Fluid Dynamics, D. H. Bergel (ed.) Academic Press, New York, Vol. 2, Chapter 11, pp. 2–65.

    Google Scholar 

  • Patel, D. J. and Vaishnav, R. N. (eds.) (1980) Basic Hemodynamics and Its Role in Disease Process. University Park Press, Baltimore, MD.

    Google Scholar 

  • Rhodin, J. A. G. (1980) Architecture of the vessel wall. In Handbook of Physiology, Sec 2 The Cardiovascular Bystem, Vol. II Vascular Smooth Muscle. American Physiological Society Bethesda, MD, pp. 1–31.

    Google Scholar 

  • Roach, M. R. and Burton, A. C. (1957) The reason for the shape of the distensibility curve of arteries. Can. J. Biochem. Physiol. 35, 681–690.

    Article  PubMed  CAS  Google Scholar 

  • Roach, M. R. and Buron, A. C. (1959) The effect of age on the elasticity of human iliac arteries. Can. J. Biochem. Physiol. 37, 557–570.

    Article  PubMed  CAS  Google Scholar 

  • Rushmer, R. F. (1970) Cardiovascular Dynamics, 3rd Edition. W. B. Saunders, Philadelphia, p. 196.

    Google Scholar 

  • Sato, M., Hayashi, K., Niimi, H., Moritake, K., Okumura, A., and Handa, H. (1979) Axial mechanical properties of arterial walls and their anisotropy. Med. & Biol. Eng. & Comput., 17, 170–176.

    Article  CAS  Google Scholar 

  • Schmid-Schönbein, G. W., Fung, Y. D., and Zweifach, B. W. (1975) Vascular endothelium —leukocyte interaction. Circulation Res. 36, 173–184.

    Article  Google Scholar 

  • Sharma, M. G. (1974) Viscoelastic behavior of conduit arteries. Biorheology 11, 279291.

    Google Scholar 

  • Shepherd, J. T. and Vanhoutte, P. M. (1975) Veins and Their Control. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Smaje, L. H., Fraser, P. A., and Clough, G. (1980) The distensibility of single capillaries and venules in the cat mesentery. Microvasc. Res. 20, 358–370.

    Article  PubMed  CAS  Google Scholar 

  • Sobin, P. (1977) Mechanical Properties of Human Veins. M. S. Thesis, University of California, San Diego, California.

    Google Scholar 

  • Sobin, S., Fung, Y. C., Tremer, H. M., and Rosenquist, T. H. (1972) Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circulation Res. 30, 440–450.

    Article  PubMed  CAS  Google Scholar 

  • Sobin, S. S., Lindal, R. G., Fung, Y. C., and Tremer, H. M. (1978) Elasticity of the smallest noncapillary pulmonary blood vessels in the cat. Microvasc. Res. 15, 57–68.

    Article  PubMed  CAS  Google Scholar 

  • Sobin, S. S., Fung, Y. C., and Tremer, H. M. (1988) Collagen and elastin fibers in human pulmonary alveolar walls. J. Appl. Physiol. 64, 1659–1675.

    PubMed  CAS  Google Scholar 

  • Takamizawa, K. and Hayashi, K. (1987) Strain-energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa, K. and Hayashi, K. (1988) Uniform strain hypothesis and thin-walled theory in arterial mechanics. Bioreoheology 25, 555–565.

    CAS  Google Scholar 

  • Tanaka, T. T. and Fung, Y. C. (1974) Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7, 357–370.

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa, K. and Matsuda, T. (1990) Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J. Appl. Mech. 57, 321–329.

    Article  Google Scholar 

  • Vaishnav, R. N., Young, J. T., Janicki, J. S., and Patel, D. J. (1972) Nonlinear anisotropic elastic properties of the canine aorta. Biophys. J. 12, 1008–1027.

    Article  PubMed  CAS  Google Scholar 

  • Vaishnav, R. N., Young, J. T., and Patel, D. J. (1973) Distribution of stresses and strain-energy density through the wall thickness in a canine aortic segment. Circulation Res. 32, 557–583.

    Article  Google Scholar 

  • Vaishnav, R. N. and Vossoughi, J. (1983) Estimation of residual strains in aortic segments. In Biomedical Engineering, II, Recent Developments, C. W. Hall (ed.) Pergamon Press, New York, pp. 330–333.

    Google Scholar 

  • Vaishnav, R. N. and Vossoughi, J. (1987) Residual stress ad strain in aortic segments. J. Biomech. 20, 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Vossoughi, J., Weizsäcker, H. W., and Vaishnav, R. M. (1985) Variation of aortic geometry in various animal species. Biomedizinische Tech. 30, 48–54.

    Article  CAS  Google Scholar 

  • Wesley, R. L. R., Vaishnav, R. N., Fuchs, J. C. A., Patel, D. J., and Greenfield, J. C. Jr. (1975) Circulation Res. 37, 509–520.

    Article  Google Scholar 

  • Wetterer, E. and Kenner, T. (1968) Grundlagen der dynamik des arterienpulses. Springer-Verlag, Berlin.

    Google Scholar 

  • Wetterer, E., Bauer, R. D., and Busse, R. (1978) New ways of determining the propagation coefficient and the viscoelastic behavior of arteries in situ. In The Arterial System, E. D. Bauer and R. Busse (eds.) Springer-Verlag, Berlin, pp. 35–47.

    Chapter  Google Scholar 

  • Wolinsky, H. and Glagov, S. (1964) Structural basis for the static mechanical properties of the aortic media. Circulation Res. 14, 400–413.

    Article  PubMed  CAS  Google Scholar 

  • Wylie, E. R. (1966) Flow through tapered tubes with nonlinear wall properties. In Biomechanics Symposium (Fung. Y. C. ed.), Am. Soc. Mech. Eng., New York, pp. 82–95.

    Google Scholar 

  • Xie, J. P., Liu, S. Q., Yang, R. F., and Fung. Y. C. (1991) The zero stress state of rat veins and vena cava. J. Biochem. Eng. 113, 36–41.

    CAS  Google Scholar 

  • Xie, J. P., Zhou, J., and Fung, Y. C. (1993) Bending of blood vessel wall: Stress-strain laws of the intima-media and adventitial layers. J. Biomech. Eng. Submitted.

    Google Scholar 

  • Yen, R. T. and Foppiano, L. (1981) Elasticity of small pulmonary veins in the cat. J. Biomech. Eng. 103, 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Young, J. T., Vaishnav, R. N., and Patel, D. J. (1977) Nonlinear anisotropic viscoelastic properties of canine arterial segments. J. Biomech. 10, 549–559.

    Article  PubMed  CAS  Google Scholar 

  • Young, T. (1809) On the functions of the heart and arteries. Philos. Trans. Roy. Soc. London 99, 1–31.

    Article  Google Scholar 

  • Yu, Q., Zhou, J., and Fung, Y. C. (1993) Neutral axis location in bending and the Young’s modulus of different layers of arterial wall. Am. J. Physiol.,in press.

    Google Scholar 

  • Zeng, Y. J., Yager, D., and Fung, Y. C. (1987) Measurement of the mechanical properties of the human lung tissue J. Biomech. Eng. 109, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Yager, D., Feldman, H., and Fung, Y. C. (1992) Microscopic vs. macroscopic deformation of the pulmonary alveolar duct. J. Appl. Phyiol. 72, 1348–1354.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, YC. (1993). Mechanical Properties and Active Remodeling of Blood Vessels. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2257-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2257-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3104-7

  • Online ISBN: 978-1-4757-2257-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics