Skip to main content

Biocorrosion

  • Chapter
Sulfate-Reducing Bacteria

Part of the book series: Biotechnology Handbooks ((BTHA,volume 8))

Abstract

As is obvious from the other chapters in this book, the sulfate-reducing bacteria (SRB) are currently one of the more intensively studied groups of microorganisms. The reasons for this are not difficult to discern. Their obligate anaerobiosis depends on a number of intriguing variations on standard aerobic respiratory metabolism. This property also determines their considerable significance in the carbon, energy, and sulfur turnover in many anoxic microbial ecosystems. Recent insights from molecular analyses have shown the group to be of particular interest in microbial evolution. However, perhaps the single most important factor stimulating the upsurge of interest in the SRB in recent years has been their considerable, albeit largely negative, ecological and economic impact. In the offshore oil and gas industries, for example, the SRB are implicated in sulfide build-up in enclosed working environments and in seabed pollution under deposits of organically rich drill cuttings (Sanders and Tibbetts, 1987); they are the principal causative organism in microbially influenced corrosion of platform structures, transmission lines, and general equipment (Hamilton, 1985; Cord-Ruwisch et al., 1987); they are the likely cause of major reservoir damage including souring of the produced oil and gas (high sulfide content), and plugging of the geological formation (Herbert, 1987). In applied microbiology, therefore, these various problems are manifestly of major importance to the industries affected by them. The study of the cellular mechanisms involved, however, can also offer rich rewards both to our understanding of microbiological processes themselves, and to our appreciation of how microbial ecosystems interact with and depend on physicochemical components of their immediate environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bryant, R. D., Jansen, W., Boivin, J., Laishley, E. J., and Costerton, J. W., 1991, Effects of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion of steel, Appl. Environ. Microbiol. 57:2804–2809.

    PubMed  CAS  Google Scholar 

  • Campaignolle, X., Luo, J. S., Bullen, J., White, D. C., Guezennec, J., and Crolet, J-L., 1993, Stabilization of localized corrosion of carbon steel by sulfate-reducing bacteria, in: Corrosion 93, National Association of Corrosion Engineers, Houston, Texas, paper no. 302.

    Google Scholar 

  • Cord-Ruwisch, R., Kleinitz, W., and Widdel, F., 1987, Sulfate-reducing bacteria and their activities in oil production, J. Pet. Technol. Jan:97-106.

    Google Scholar 

  • Costello, J. A., 1974, Cathodic depolarization by sulphate-reducing bacteria, S. Afr.J. Sci. 70:202–204.

    CAS  Google Scholar 

  • Crolet, J.-L., 1992, From biology and corrosion to biocorrosion, Oceanologica Acta 15(1):87–94.

    CAS  Google Scholar 

  • Crolet, J.-L., 1993, Mechanism of uniform corrosion under corrosion deposits, J. Material Sci. 28:2589–2606.

    Article  CAS  Google Scholar 

  • Crolet, J.-L., Daumas, S., and Magot, M., 1993, pH regulation by sulfate-reducing bacteria, in: Corrosion 93, National Association of Corrosion Engineers, Houston, Texas, paper no. 303.

    Google Scholar 

  • Crolet, J.-L., Pourbaix, M., and Pourbaix, A., 1991, The role of trace amounts of oxygen on the corrosivity of H2S media, in: Corrosion 91 NACE, Houston, Texas, paper no. 22.

    Google Scholar 

  • Daumas, S., Magot, M., and Crolet, J.-L., 1993, Measurement of the net production of acidity by a sulphate-reducing bacterium: experimental checking of theoretical models of microbially influenced corrosion, Res. Microbiol. 144:327–332.

    Article  PubMed  CAS  Google Scholar 

  • Dexter, S. C., Duquette, D. J., Siebert, O. W., and Videla, H. A., 1991, Use and limitations of electrochemical techniques for investigating microbiological corrosion, Corrosion 47:308–318.

    Article  CAS  Google Scholar 

  • Guezennec, J., Dowling, N. J., Conte, M., Antoine, E., and Fiksdal, L., 1991, Cathodic protection in marine sediments and the aerated seawater column, in: Microbially Influenced Corrosion and Biodeterioration (N.J. Dowling, M. W. Mittleman, and J. C. Danko, eds.), National Association of Corrosion Engineers, Washington, pp. 643–650.

    Google Scholar 

  • Hamilton, W. A., 1985, Sulphate-reducing bacteria and anaerobic corrosion, Ann. Rev. Microbiol. 39:195–217.

    Article  CAS  Google Scholar 

  • Hamilton, W. A., 1991, Sulphate-reducing bacteria and their role in biocorrosion, in: Biofouling and Biocorrosion in Industrial Water Systems, (H-C. Flemming and G. G. Geesey, eds.), Springer-Verlag, Berlin, pp. 187–193.

    Chapter  Google Scholar 

  • Hardy, J. A., and Bown, J., 1984, The corrosion of mild steel by biogenic sulphide films exposed to air, Corrosion 40:650–654.

    Article  CAS  Google Scholar 

  • Hardy, J. A., 1983, Utilization of cathodic hydrogen by sulphate-reducing bacteria, Brit. Corr.J. 18:190–193.

    Article  CAS  Google Scholar 

  • Herbert, B. N., 1987, Reservoir souring, in: Microbial Problems in the Offshore Oil Industry, (E. C. Hill, J. L. Shennan, and R. J. Watkinson, eds.) Wiley, Chichester, pp. 63–73.

    Google Scholar 

  • King, R. A., and Miller, J.D.A., 1971, Corrosion by sulphate-reducing bacteria, Nature 233:491–492.

    Article  PubMed  CAS  Google Scholar 

  • King, R. A., Dittmer, C. K., and Miller, J.D.A., 1976, Effect of ferrous iron concentration on the corrosion of iron in semicontinuous cultures of sulphate-reducing bacteria, Brit. Con. J. 11:105–107.

    CAS  Google Scholar 

  • King, R. A. Miller, J.D.A., and Wakerley, D. S., 1973, Corrosion of mild steel in cultures of sulphate-reducing bacteria: effect of changing the soluble iron concentration during growth, Brit. Corr. J. 8:89–93.

    Article  CAS  Google Scholar 

  • Lee, W., and Characklis, W. G., 1993, Corrosion of mild steel under anaerobic biofilm, Corrosion 49:186–199.

    Article  CAS  Google Scholar 

  • Lee, W., Lewandowski, Z., Okabe, S., Characklis, W. G., and Avci, R., 1993a, Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. Part 1: at low dissolved oxygen concentration, Biofouling 7:197–216.

    Article  CAS  Google Scholar 

  • Lee, W., Lewandowski, Z., Morrison, M., Characklis, W. G., Avci, R., and Nielsen, P. H., 1993b, Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. Part II: at high bulk oxygen concentration, Biofouling 7:217–239.

    Article  CAS  Google Scholar 

  • Lee, W., Lewandowski, Z., Nielsen, P. H., and Hamilton, W. A., 1995, Role of sulfate-reducing bacteria in corrosion of mild steel: a review, Biofouling, 8:165–194.

    Article  CAS  Google Scholar 

  • Maldonado-Zagal, S. B., and Boden, P. J., 1982, Hydrolysis of elemental sulfur in water and its effect on the corrosion of mild steel, Brit, Corr.J. 17:116–120.

    Article  CAS  Google Scholar 

  • Mara, D. D., and Williams, D.J.A., 1972, The mechanism of sulphide corrosion by sulphate-reducing bacteria, in: Biodeterioration of Materials, Vol. 2 (A. M. Walters and E. H. Hueck van der Plas, eds.), Applied Science Publishers, London, pp. 103–113.

    Google Scholar 

  • McKenzie, J., and Hamilton, W. A., 1992, The assay of in-situ activities of sulphate-reducing bacteria in a laboratory marine corrosion model, Internat. Biodeterior. Biodegrad. 29:285–297.

    Article  CAS  Google Scholar 

  • Moosavi, A. N., Pirrie, R. S., and Hamilton, W. A., 1991, Effect of sulphate-reducing bacteria activity on performance of sacrificial anodes, in: Microbially Influenced Corrosion and Biodeterioration (N. J. Dowling, M. W. Mittleman, and J. C. Danko, eds.), National Association of Corrosion Engineers, Washington, pp. 3.13–3.27.

    Google Scholar 

  • Newman, R. C., Webster, B. J., and Kelly, R. G., 1991, The electrochemistry of SRB corrosion and related inorganic phenomena, ISIJ International, 31:201–209.

    Article  CAS  Google Scholar 

  • Nielsen, P. H., Lee, W., Lewandowski, Z., Morrison, M., and Characklis, W. G., 1993, Corrosion of mild steel in an alternating oxic and anoxic biofilm system, Biofouling 7:267–284.

    Article  Google Scholar 

  • Pankhania, I. P., Moosavi, A. N., and Hamilton, W. A. 1986, Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hildenborough), J. Gen. Microbiol. 132:3357–3365.

    CAS  Google Scholar 

  • Salvarezza, R. C., and Videla, H. A., 1980, Passivity breakdown of mild steel in sea water in the presence of sulfate reducing bacteria, Corrosion 36(10):550–554.

    CAS  Google Scholar 

  • Salvarezza, R. C., Videla, H. A., and Arvia, A. J., 1983, The electrochemical behaviour of mild steel in phosphate-borate-sulphide solutions, Corrosion Sci. 23(7):717–732.

    Article  CAS  Google Scholar 

  • Sanders, P. F., and Tibbetts, P. J., 1987, Effects of discarded drill muds on microbial populations, Phil. Trans. Roy. Soc. Lond. Ser. B, 316:567–585.

    Article  CAS  Google Scholar 

  • Schaschl, E., 1980, Elemental sulfur as a corrodent in deaerated, neutral aqueous solutions, Materials Performance 19:9–12.

    CAS  Google Scholar 

  • Schmitt, G., 1991, Effect of elemental sulfur on corrosion in sour gas systems, Corrosion 47:285–308

    Article  CAS  Google Scholar 

  • Tatnall, R. E., 1991, Case histories: biocorrosion, in: Biofouling and Biocorrosion in Industrial Water Systems, (H.-C. Flemming and G. G. Geesey, eds.), Springer-Verlag, Berlin, pp. 165–185.

    Chapter  Google Scholar 

  • Tiller, A. K., 1982, Aspects of microbial corrosion, in: Corrosion Processes (R. N. Parkins, ed.), Applied Science Publishers, London, pp. 115–159.

    Google Scholar 

  • von Wolzogen Kuhr, C.A.M., and van der Vlught, I. S., 1934, The graphitisation of cast iron as an electrobiochemical process in anaerobic soils, Water 18:147–165.

    Google Scholar 

  • Wanklyn, J. N., and Spruit, J.C.P., 1952, Nature 169:928–929.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamilton, W.A., Lee, W. (1995). Biocorrosion. In: Barton, L.L. (eds) Sulfate-Reducing Bacteria. Biotechnology Handbooks, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1582-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1582-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1584-9

  • Online ISBN: 978-1-4899-1582-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics