Skip to main content

Fluorescent Molecular Tomography for In Vivo Imaging of Mouse Atherosclerosis

  • Protocol
Methods in Mouse Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1339))

Abstract

Optical imaging technologies such as fluorescence molecular tomography (FMT) are gaining great relevance in cardiovascular research. The main reason is the increased number of available fluorescent agents, especially those termed “activatable probes,” which remain quenched under baseline conditions and are fluorescent when a specific enzymatic activity is present. A major characteristic of FMT is the possibility of obtaining quantitative data of fluorescence signal distribution in a noninvasive fashion and using nonionizing radiation, making FMT an invaluable tool for longitudinal studies with biomedical applications. Here, we describe a standard procedure to perform FMT experiments in atherosclerosis mouse models, from the handling of the animals to the reconstruction of the 3D images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ripoll J (2012) Principles of diffuse light propagation. World Scientific, Singapore

    Google Scholar 

  2. Valeur B, Berberan-Santos M (2012) Molecular fluorescence: principles and applications. Wiley Online Library, Weinheim

    Book  Google Scholar 

  3. Arridge SR, Schotland JC (2009) Optical tomography: forward and inverse problems. Inv Probl 25:123010

    Article  Google Scholar 

  4. Ntziachristos V, Leroy-Willig A, Tavitian B (eds) (2007) Textbook of in vivo imaging in vertebrates. Wiley Online Library, Chichester

    Google Scholar 

  5. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:5007–5008

    Article  Google Scholar 

  6. Ntziachristos V, Ripoll J, Wang LV et al (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  CAS  PubMed  Google Scholar 

  7. Hara T, Bhayana B, Thompson B et al (2012) Molecular imaging of fibrin deposition in deep vein thrombosis using a new fibrin-targeted near-infrared fluorescence (NIRF) imaging strategy. JACC Cardiovasc Imaging 5:607–615

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ale A, Siebenhaar F, Kosanke K et al (2013) Cardioprotective C-kit+ bone marrow cells attenuate apoptosis after acute myocardial infarction in mice - in-vivo assessment with fluorescence molecular imaging. Theranostics 3:903–913

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kaijzel EL, van Heijningen PM, Wielopolski PA et al (2010) Multimodality imaging reveals a gradual increase in matrix metalloproteinase activity at aneurysmal lesions in live fibulin-4 mice. Circ Cardiovasc Imaging 3:567–577

    Article  PubMed  Google Scholar 

  10. Tarin C, Lavin B, Gomez M et al (2011) The extracellular matrix metalloproteinase inducer EMMPRIN is a target of nitric oxide in myocardial ischemia/reperfusion. Free Radic Biol Med 51:387–395

    Article  CAS  PubMed  Google Scholar 

  11. Deguchi J, Aikawa M, Tung C-H et al (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55–62

    Article  PubMed  Google Scholar 

  12. Rodriguez-Menocal L, Wei Y, Pham SM et al (2010) A novel mouse model of in-stent restenosis. Atherosclerosis 209:359–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Li B, Maafi F, Berti R et al (2014) Hybrid FMT-MRI applied to in vivo atherosclerosis imaging. Biomed Opt Express 5:1664

    Article  PubMed Central  PubMed  Google Scholar 

  14. Nahrendorf M, Waterman P, Thurber G et al (2009) Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 29:1444–1451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Chen J (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105:2766–2771

    Article  PubMed  Google Scholar 

  16. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL et al (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841

    Article  PubMed Central  PubMed  Google Scholar 

  17. Schweiger M, Arridge S (2014) The Toast++ software suite for forward and inverse modeling in optical tomography. J Biomed Opt 19(4):040801

    Article  PubMed  Google Scholar 

  18. Simantiraki M, Favicchio R, Psycharakis S et al (2009) Multispectral unmixing of fluorescence molecular tomography data. J Innov Opt Health Sci 2:353–364

    Article  Google Scholar 

  19. Fuster JJ, Castillo AI, Zaragoza C et al (2011) Animal models of atherosclerosis. In: Conn PM (ed) Progress in molecular biology and translational science - animal models of molecular pathology. Elsevier, Amsterdam, pp 1–23

    Google Scholar 

  20. Bhaumik S, DePuy J, Klimash J (2007) Strategies to minimize background autofluorescence in live mice during noninvasive fluorescence optical imaging. Lab Anim 36:40–43

    Article  Google Scholar 

  21. Slominski A, Paus R (1993) Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J Invest Dermatol 101:90S–97S

    Article  CAS  PubMed  Google Scholar 

  22. Filonov GS, Piatkevich KD, Ting L-M et al (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29:757–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shcherbakova D, Verkhusha V (2013) Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10:751–754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Tichauer KM, Holt RW, El-Ghussein F et al (2013) Dual-tracer background subtraction approach for fluorescent molecular tomography. J Biomed Opt 18:16003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alicia Arranz or Jorge Ripoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arranz, A., Rudin, M., Zaragoza, C., Ripoll, J. (2015). Fluorescent Molecular Tomography for In Vivo Imaging of Mouse Atherosclerosis. In: Andrés, V., Dorado, B. (eds) Methods in Mouse Atherosclerosis. Methods in Molecular Biology, vol 1339. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2929-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2929-0_27

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2928-3

  • Online ISBN: 978-1-4939-2929-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics