Skip to main content

Targeting of Nanoparticles: Folate Receptor

  • Protocol
  • First Online:
Cancer Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 624))

Abstract

Nanoparticulate medicines offer the advantage of allowing delivery of large quantities of unmodified drug within the same particle. Nanoparticle uptake by cancer cells can, however, be compromised due to the large size and hydrophilicity of the particle. To circumvent cell penetration problems and simultaneously improve tumor specificity, nanoparticulate medicines have been linked to targeting ligands that bind to malignant cell surfaces and enter cells by receptor-mediated endocytosis. In this chapter, we summarize multiple methods for delivering nanoparticles into cancer cells by folate receptor-mediated endocytosis, devoting special emphasis to folate-targeted liposomes. Folate receptor-mediated endocytosis has emerged as an attractive strategy for nanoparticle delivery due to both overexpression of the folate receptor on cancer cells and the rapid internalization of the receptor by receptor-mediated endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, J., and Thus, M. J. (2008) Cancer statistics, 2008. CA Cancer J Clin 58, 71–96.

    Article  PubMed  Google Scholar 

  2. Menon, U. and Jacobs, I. J. (2000) Recent development in ovarian cancer screening. Curr Opin Obstet Gynecol 12, 39–42.

    Article  CAS  PubMed  Google Scholar 

  3. Li, C. (2002) Poly(L-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev 54, 695–713.

    Article  CAS  PubMed  Google Scholar 

  4. Gabizon, A. (1995) Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 16, 285–294.

    Article  CAS  Google Scholar 

  5. Nie, S., Xing, Y., Kim, G. J., and Simons, J. W. (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9, 12.1–12.32.

    Article  Google Scholar 

  6. Ringsdorf, H. (1975) Structure and properties of pharmacologically active polymers. J Polm Sci Polym Symp 51, 135–153.

    Article  CAS  Google Scholar 

  7. Moghimi, S. M. and Hunter, A. C. (2000) Poloxamers and poloxamines in nanoparticles engineering and experimental medicine. Trends Biotechnol 18, 412–420.

    Article  CAS  PubMed  Google Scholar 

  8. Park, E. K., Lee, S. B., and Lee, Y. M. (2005) Preparation and characterization of methoxypoly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26, 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  9. Lichtenberg, D. (1988) Liposomes: preparation, characterization, and preservation. Methods Biochem Anal 33, 337–468.

    Article  CAS  PubMed  Google Scholar 

  10. Litzinger, D. C. and Huang, L. (1992) Phosphatidylethanol amine liposomes: drug delivery, gene transfer, and immunodiagnostic applications. Biochim Biophys Acta 1113, 201–227.

    CAS  PubMed  Google Scholar 

  11. Matsumura, Y. and Maeda, H. (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46, 6387–6392.

    CAS  PubMed  Google Scholar 

  12. Meada, H. (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular targeting. Adv Enzyme Regul 41, 189–207.

    Article  Google Scholar 

  13. Allen, T. M. (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2, 750–763.

    Article  CAS  PubMed  Google Scholar 

  14. Low, P. S. and Antony, A. C. (2004) Folate receptor-targeted drugs for cancer and inflammatory disease. Adv Drug Deliv Rev 56, 1055–1231.

    Article  CAS  PubMed  Google Scholar 

  15. Ross, J. F., Chaudhuri, P. K., and Ratnam, M. (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73, 2432–2443.

    Article  CAS  PubMed  Google Scholar 

  16. Weitman, S. D., Lark, R. H., Coney, L. R., Fort, D. W., Frasca, V., Zurawski, V. R., and Kamen, B. A. (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52, 3396–3401.

    CAS  PubMed  Google Scholar 

  17. Reddy, J. A., Allagadda, V. M., and Leamon, C. P. (2005) Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr Pharm Biotech 6, 131–150.

    Article  CAS  Google Scholar 

  18. Kamen, B. A. and Capdevila, A. (1986) Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci USA 83, 5983–5987.

    Article  CAS  PubMed  Google Scholar 

  19. Henne, W. A., Doorneweerd, D. D., Hilgenbrink, A. R., Kularatne, S. A., and Low, P. S. (2006) Synthesis and activity of a folate peptide camptothecin prodrug. Bioorg Med Chem Lett 16, 5350–5355.

    Article  CAS  PubMed  Google Scholar 

  20. Reddy, J. A. and Low, P. S. (2000) Enhanced folate receptor-mediated gene therapy using a novel pH-sensitive lipid formulation. J Control Release 64, 27–37.

    Article  CAS  PubMed  Google Scholar 

  21. Lu, Y. and Low, P. S. (2002) Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 51, 153–162.

    Article  CAS  PubMed  Google Scholar 

  22. Leamon, C. P. and Low, P. S. (1992) Cytotoxicity of momordin-folate conjugates in cultured human cells. J Biol Chem 267, 24966–24971.

    CAS  PubMed  Google Scholar 

  23. Zhao, X., Li, H., and Lee, R. J. (2008) Target drug delivery via folate receptors. Expert Opin Drug Deliv 5, 309–319.

    Article  CAS  PubMed  Google Scholar 

  24. Majoros, I. J., Thomas, T. P., Mehta, C. B., and Baker, J. R. (2005) Poly(amidoamine) dendrimer-base multifunctional engineered nanodevice for cancer therapy. J Med Chem 48, 5892–5899.

    Article  CAS  PubMed  Google Scholar 

  25. Yoo, H. S. and Park, T. G. (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 100, 247–256.

    Article  CAS  PubMed  Google Scholar 

  26. Leamon, C. P., Parker, M. A., Vlahov, I. R., Xu, L. C., Reddy, J. A., Vetzel, M., and Douglas, N. (2002) Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical. Bioconjugate Chem 13, 1200–1210.

    Article  CAS  Google Scholar 

  27. Yoshizawa, T., Hattori, Y., Hakoshima, M., Koga, K., and Maitani, Y. (2008) Folate-linked lipid-base nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm 70, 718–725.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, R. J., Wang, S., Turk, M. J., and Low, P. S. (1998) The effects of pH and intraliposomal buffer strength on the rate of liposome content release and intracellular drug delivery. Biosci Rep 18, 69–78.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, J., Chen, H., Vlahov, I. R., Cheng, J., and Low, P. S. (2007) Characterization of the pH of folate receptor-containing endosomes and the rate of hydrolysis of internalized acid-labile folate-drug conjugates. J Pharmacol Exp Ther 321, 462–468.

    Article  CAS  PubMed  Google Scholar 

  30. Larsen, A. K., Escargueil, A. K., and Skladanowski, A. (2000) Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 85, 217–229.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, L., Vlahov, I. R., Leamon, C. P., Santhapuram, H., and Li, C. (2006) Synthesis and purification of pteroic acid and conjugates thereof. US Patent WO2006101845.

    Google Scholar 

  32. Zhang, Y., Guo, L., Roeske, R. W., Antony, A. C., and Jayaram, H. N. (2004) Pteroyl-γ-glutamate-cysteine synthesis and its application in folate receptor-mediated cancer cell targeting using folate-tethered liposomes. Anal Biochem 332, 168–177.

    Article  CAS  PubMed  Google Scholar 

  33. Wu, J., Liu, Q., and Lee, R. J. (2006) A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm 316, 148–153.

    Article  CAS  PubMed  Google Scholar 

  34. Rouser, G., Fleischer, J., and Yamamoto, A. (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids 5, 494–496.

    Article  CAS  PubMed  Google Scholar 

  35. Vlahov, I. R., Santhapuram, H. R., Kleindl, P. J., Howard, S. J., Stanford, K. M., and Leamon, C. P. (2006) Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part 1: EC 145, a folic acid conjugate of desacetylvinblastine monohydrazide. Bioorg Med Chem Lett 16, 5093–5096.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kularatne, S.A., Low, P.S. (2010). Targeting of Nanoparticles: Folate Receptor. In: Grobmyer, S., Moudgil, B. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 624. Humana Press. https://doi.org/10.1007/978-1-60761-609-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-609-2_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-608-5

  • Online ISBN: 978-1-60761-609-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics