Skip to main content

Role of Fungal Enzymes for Bioremediation of Hazardous Chemicals

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Environmental hazard is growing more and more due to the indiscriminate and frequently deliberate release of harmful substances. Use of chemicals in industrial processes including nuclear experiments, agricultural practices, and various aspects of our daily lives resulted into the release of potential hazardous chemicals into the environment either on purpose or by accident. These hazardous chemicals known to pollute the environment are pesticides, heavy metals, hydrocarbons, drugs, halogenated solvents, and agricultural chemicals. After their release into environment, these chemicals are transported through the water, soil, and atmosphere sources. Fungi play a very crucial role in bioremediation of hazardous chemicals owing to their robust morphology and diverse metabolic capacity. Fungal enzymes have potential to effectively transform and detoxify hazardous substances. They have been recognized to be able to transform pollutants at a detectable rate and are potentially suitable to restore polluted environments. The fungal degradation of xenobiotics is looked upon as an effective method of removing these pollutants from the environment by a process which is currently known as bioremediation. The present chapter focuses on different fungal groups secreted a number of enzymes from a variety of habitats with their role in bioremediation of different toxic and recalcitrant compounds. This chapter presents an extensive review of the fungal activities on hazardous chemicals, fungal diversity, and the use of fungi in the degradation of chemical pollutants, enzyme degrading systems, and perspectives on the use of fungi in bioremediation and unexplored research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Akileswaran L, Brock BJ, Cereghino JL, Gold MH (1999) 1, 4-Benzoquinone reductase from Phanerochaete chrysosporium: cDNA cloning and regulation of expression. Appl Environ Microbiol 65:415–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexopoulos CJ, Mims CN, Blackwell M (1996) Introductory mycology. Willey, New York

    Google Scholar 

  • Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8

    Article  CAS  PubMed  Google Scholar 

  • Arora DS, Rampal P (2002) Laccase production by some Phlebia species. J Basic Microbiol 42:295–301

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Srivastava A, Singh V (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegr 1:1–8

    Article  CAS  Google Scholar 

  • Ba S, Kumar VV (2017) Recent developments in the use of tyrosinase and laccase in environmental applications. Crit Rev Biotechnol 37:819–832

    Article  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Bennett GF (2007) Mycoremediation: fungal bioremediation. J Hazard Mater 144:594–595

    Article  CAS  Google Scholar 

  • Benny GL, Humber RA, Voigt K (2014) Zygomycetous fungi: phylum entomophthoromycota and subphyla kickxellomycotina, mortierellomycotina, mucoromycotina, and zoopagomycotina. In: Esse K, McLaughlin DJ, Spatafora JW (eds) Systematics and evolution, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Bhattacharya SS, Syed K, Shann J, Yadav JS (2013) A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white-rot fungus Phanerochaete chrysosporium. J Hazard Mater 261:675–683

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Halasz A, Spain J, Thiboutot S, Ampleman G, Hawari J (2002) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol 36:3104–3108

    Article  CAS  PubMed  Google Scholar 

  • Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M et al (2017) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318

    Article  CAS  PubMed  Google Scholar 

  • Broda P (1992) Using microorganism for bioremediation: the barriers to implementation. Trends Biotechnol 10:303–304

    Article  CAS  PubMed  Google Scholar 

  • Cajthaml T, Kˇresinová Z, Svobodová K, Möder M (2009) Biodegradation of endocrine disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75:745–750

    Article  CAS  PubMed  Google Scholar 

  • Canet JR, Birnstingl G, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native micro¯ora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76:113–117

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN, McGenity T, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, Heidelberg, pp 2079–2110

    Google Scholar 

  • Cirino PC, Arnold FH (2002) Protein engineering of oxygenases for biocatalysis. Curr Opin Chem Biol 6:130–135

    Article  CAS  PubMed  Google Scholar 

  • Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73:274–290

    Article  CAS  PubMed  Google Scholar 

  • Dana LD, Bauder JW (2011) A general essay on bioremediation of contaminated soil. Montana State University, Bozeman

    Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Appl Environ Microbiol 72:28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Cruz MS, Gago-Ferrero P, Badia-Fabregat M, Caminal G, Vicent T, Barceló D (2015) Fungal-mediated biodegradation of ingredients in personal care products. In: Díaz-Cruz MS, Barceló D (eds) Personal care products in the aquatic environment. Springer International Publishing, Cham, pp 295–317

    Chapter  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  PubMed  Google Scholar 

  • Durairaj P, Malla S, Nadarajan SP et al (2015) Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of x-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb Cell Factories 14:1–16

    Article  CAS  Google Scholar 

  • Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-Trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans TN, Seviour RJ (2012) Estimating biodiversity of fungi in activated sludge communities using culture-independent methods. Microb Ecol 63:773–786

    Article  PubMed  Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–25

    Article  CAS  Google Scholar 

  • Giardina P, Cannio R, Martirani L, Marzullo L, Palmieri G, Sannia G (1995) Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 61:2408–2413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie IMM, Philip JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31:329–332

    Article  CAS  PubMed  Google Scholar 

  • Gnanasalomi VDV, Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of hazardous pollutants using fungi. Int J Comput Algorithm 2:273–278

    Google Scholar 

  • Guengerich FP, Munro AW (2013) Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288:17065–17073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habash M, Trevors J, Lee H (2004) Bacterial reductive dehalogenases. In: Singh A, Ward OP (eds) Biodegradation and bioremediation soil biology. Springer, Berlin, pp 197–233

    Chapter  Google Scholar 

  • Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219–232

    Article  CAS  PubMed  Google Scholar 

  • Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 103:41–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 33–45

    Google Scholar 

  • Hammel K, Green B, Gai WZ (1991) Ring fission of anthracene by eukariote. Proc Natl Acad Sci 88:10605–10608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol l9:177–192

    Article  CAS  Google Scholar 

  • Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11:129–133

    Article  CAS  PubMed  Google Scholar 

  • Hildén K, Hakala TK, Lundell T (2009) Thermotolerant and thermostable laccases. Biotechnol Lett 31:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Hiner AN, Hernández-Ruiz J, Rodríguez-López JN, García-Cánovas F, Brisset NC, Smith AT, Arnao MB, Acosta M (2002) Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide: catalase-like activity, compound III formation, and enzyme inactivation. J Biol Chem 277:26879–26885

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M (2002) Review: Lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1994) Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2. J Basic Microbiol 34:163–172

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M, Ullrich R, Kellner H, Upadhyay RC Scheibner K (2014) Fungal unspecific peroxygenases: a new generation of oxygen-transferring biocatalysts, proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8)

    Google Scholar 

  • Hofrichter M, Kellner H, Pecyna MJ, Ullrich R (2015) Fungal unspecific peroxygenases: Heme-Thiolate proteins that combine peroxidase and cytochrome P450 properties. In: Hrycay E, Bandiera S (eds) Monooxygenase, peroxidase and peroxygenase properties and mechanisms of cytochrome P450. Advances in experimental medicine and biology, vol 851. Springer, Cham

    Google Scholar 

  • Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F (2000) Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl Environ Microbiol 66:4157–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichinose H (2013) Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 60:71–81

    Article  CAS  PubMed  Google Scholar 

  • Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of textile dye using white-rot fungi: a review. Int J Curr Res Rev 5:1–13

    Google Scholar 

  • Juwarkar A, Singh S, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Bio 9:215–288

    Google Scholar 

  • Kang SI, Kang SY, Hur HG (2008) Identification of fungal metabolites of anticonvulsant drug carbamazepine. Appl Microbiol Biotechnol 79:663–669

    Article  CAS  PubMed  Google Scholar 

  • Karich A, Ullrich R, Scheibner K, Hofrichter M (2017) Fungal unspecific peroxygenases oxidize the majority of organic EPA priority pollutants. Front Microbiol 8:1–5

    Article  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011:1–11

    Article  CAS  Google Scholar 

  • Kasai N, Ikushiro SI, Shinkyo R, Yasuda K, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Sakaki T (2010) Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 6:773–780

    Article  CAS  Google Scholar 

  • Khadrani A, Seigle-Murandi F, Steiman R, Vroumsia T (1999) Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 38:3041–3050

    Article  CAS  PubMed  Google Scholar 

  • Koua D, Cerutti L, Falquet L, Sigrist CJ, Theiler G, Hulo N, Dunand C (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37:D261–D266

    Article  CAS  PubMed  Google Scholar 

  • Kulshrestha G, Kumari A (2011) Fungal degradation of chlor- pyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47:219–225

    Article  CAS  Google Scholar 

  • Kumar A, Sharma B (2018) Consequences of heavy metals pollution in environment and bioremediation practices. In: Bharagava RN (ed) Recent advances in environmental management. CRC Press, Taylor & Francis Group, Boca Raton, pp 247–273

    Google Scholar 

  • Kumar A, Singh N, Pandey R, Gupta VK, Sharma B (2018) Biochemical and molecular targets of heavy metals and their actions. In: Rai M, Ingle A, Medici S (eds) Biomedical applications of metals. Springer, Cham

    Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016a) Rev Environ Contam Toxicol 236:117–192

    CAS  PubMed  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Naidu R (2016b) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings - assessments in liquid-and slurry-phase systems. Int Biodeterior Biodegradation 108:149–157

    Article  CAS  Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up a mess. J Biotechnol 2:18–22

    Google Scholar 

  • Liao CS, Yuan SY, Hung BH, Chang BV (2012) Fundamentals of molecular mycology. J Environ Monit 14:1983–1988

    Article  CAS  PubMed  Google Scholar 

  • Lien PJ, Ho HJ, Lee TH, Lai WL, Kao CM (2015) Effects of aquifer heterogeneity and geochemical variation on petroleum hydrocarbon biodegradation at a gasoline spill site. Adv Mater Res 1079:584–588

    Google Scholar 

  • Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Liu J, Ju M, Li X, Wang P (2017) Bacteria-white-rot fungi joint remediation of petroleum-contaminated soil based on sustained release of laccase. R Soc Chem 7:39075–39081

    CAS  Google Scholar 

  • Lynch MDJ, Thorn RG (2006) Diversity of Basidiomycetes in Michigan agricultural soils. Appl Environ Microbiol 72:7050–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350

    Article  CAS  PubMed  Google Scholar 

  • Marco E, Font X, Sánchez A, Gea T, Gabarrell X, Caminal G (2013) Co-composting as a management strategy to reuse the white–rot fungus Trametes versicolor after its use in a biotechnological process. Int J Environ Waste Manag 11:100–108

    Article  CAS  Google Scholar 

  • Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of nonligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32:620–628

    Article  CAS  Google Scholar 

  • Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10:1457–1467

    Article  CAS  PubMed  Google Scholar 

  • Maza-Márquez P, Vilchez-Vargas R, Kerckhof FM, Aranda E, González- López J, Rodelas B (2016) Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment. Water Res 105:507–519

    Article  CAS  PubMed  Google Scholar 

  • McErlean C, Marchant R, Banat IM (2006) An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Antonie Van Leeuwenhoek 90:147–158

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Malik A (2014) Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol 171:217–226

    Article  CAS  PubMed  Google Scholar 

  • Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y (2006) Mechanism of bacteria-fungi joint remediation system. Rev Environ Sci Biotechnol 5:347–374

    Article  CAS  Google Scholar 

  • Moody JD, Freeman JP, Ceniglia CE (2004) Degradation of benzo[a] pyrene by Mycobacterium vanbaolenii PYR-1. Appl Environ Microbiol 70:340–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengi L, Jacquot J-P, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6:248–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nõlvak H, Truu J, Limane B, Truu M, Cepurnieks G, Bartkevičs V, Juhanson J, Muter O (2013) Microbial community changes in TNT spiked soil bioremediation trial using biostimulation, phytoremediation and bioaugmentation. J Environ Eng Landsc Manag 21:153–162

    Google Scholar 

  • Oh YS, Choi SC, Kim YK (1998) Degradation of gaseous BTEX biofiltration with Phanerochaete chrysosporium. J Microbiol 36:34–38

    CAS  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO Jr, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144

    Article  CAS  PubMed  Google Scholar 

  • Peter S, Kinne M, Ullrich R, Kayser G, Hofrichter M (2013) Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase enzyme. Microb Technol 10:370–376

    Article  CAS  Google Scholar 

  • Pinedo-Rilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  Google Scholar 

  • Prenafeta-Boldú FX, Summerbell R, Sybren de Hoog G (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    Article  PubMed  CAS  Google Scholar 

  • Prince RC. (2010) Eukaryotic hydrocarbon degraders. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds), Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag, Berlin, Heidelberg, pp 2065–2078.

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10:333–353

    Article  Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham

    Book  Google Scholar 

  • Rieble S, Joshi DK, Gold MH (1994) Aromatic nitroreductase from the basidiomycete Phanerochaete Chrysosporium. Biochem Biophys Res Commun 205:298–304

    Article  CAS  PubMed  Google Scholar 

  • Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18:52–59

    Article  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452

    Article  PubMed  CAS  Google Scholar 

  • Sagarkar S, Mukherjee S, Nousiainen A, Björklöf K, Purohit HJ, Jørgensen KS, Kapley A (2013) Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environ Pollut 172:108–115

    Article  CAS  PubMed  Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Dannert C (2016) Biocatalytic portfolio of Basidiomycota. Curr Opin Chem Biol 31:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Silva M, Esposito E (2004) O papel dos fungos na recupera¸c˜ao ambiental. In Fungos: Uma Introdu¸c˜ao a Biologia, Bioquimica e Biotecnologia. Esposito E and De Azevedo JL (Eds.). EDUCS Ed 2:337–375

    Google Scholar 

  • Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediment for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405

    Article  Google Scholar 

  • Silva MC, Torres JA, Castro AA, da Cunha EF, Alves de Oliveira LC, Corrêa AD, Ramalho TC (2016) Combined experimental and theoretical study on the removal of pollutant compounds by peroxidases: affinity and reactivity toward a bioremediation catalyst. J Biomol Struct Dyn 34:1839–1848

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Gupta VK, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:1–9

    Article  CAS  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555

    Article  CAS  PubMed  Google Scholar 

  • Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) The fungi. Curr Biol 19:R840–R845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmet PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theron CW, Labuschagné M, Gudiminchi R, Albertyn J, Smit MS (2014) A broad-range yeast expression system reveals Arxula adeninivorans expressing a fungal self-sufficient cytochrome P450 monooxygenase as an excellent whole-cell biocatalyst. FEMS Yeast Res 14:556–566

    Article  CAS  PubMed  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36

    Article  CAS  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Wang X, Cai Z, Zhou Q, Zhang Z, Chen C (2012) Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnol Bioeng 109(2):426

    Article  CAS  PubMed  Google Scholar 

  • Weber SD, Hofmann A, Pilhofer M, Wanner G, Agerer R, Ludwig W, Schleifer KH, Fried J (2009) The diversity of fungi in aerobic sewage granules assessed by 18S rRNA gene and ITS sequence analyses. FEMS Microbiol Ecol 68:246–254

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Teng Y, Li Z, Liao X, Luo Y (2008) Advances in applied bioremediation. Soil Biol Biochem 40:789–796

    Article  CAS  Google Scholar 

  • Yadav JS, Reddy CA (1993) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by lignin–degrading basidiomycetes Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017a) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017b) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Book  Google Scholar 

  • Zaidi KU, Ali AS, Ali SA, Naaz I (2014) Microbial Tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem Res Int 2014:1–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NS and AK are grateful to the University Grant Commission, New Delhi, for providing financial assistance in the form of a Research Fellowship. The authors acknowledge UGC-SAP and DST-FIST for the support to the Department of Biochemistry, University of Allahabad, Allahabad, India. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Kumar, A., Sharma, B. (2019). Role of Fungal Enzymes for Bioremediation of Hazardous Chemicals. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-25506-0_9

Download citation

Publish with us

Policies and ethics