Skip to main content

Part of the book series: Computer-Supported Collaborative Learning Series ((CULS,volume 19))

Abstract

This chapter will start with a characterization of log-file data and related examples and then elaborate on ensuing levels of processing, interpretation/meaning-making, and finally support for decision-making and action (“actionable insights”). According to the characteristic of log files as sequences of action descriptions, we will set our focus on what has been called “Action Analysis” as compared to “Discourse Analysis.” Following up on the characterization of input data, we will review computational techniques that support the analysis of log files. Techniques of interest include process-oriented approaches (such as process mining, sequence analysis, or sequential pattern mining) as well as approaches based on social network analysis (SNA). Such techniques will be further discussed regarding their contribution to data interpretation and meaning-making. Finally, the future direction of log-file analysis is discussed considering the development of new technologies to analyze spoken conversation and nonverbal behaviors as part of action–log data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, A., & Tsay, A. (2000). Sequence analysis and optimal matching methods in sociology review and prospect. Sociological Methods & Research, 29, 3–33.

    Article  Google Scholar 

  • Balacheff, N., Ludvigsen, S., De Jong, T., Lazonder, A., Barnes, S. A., & Montandon, L. (2009). Technology-enhanced learning. Springer.

    Google Scholar 

  • Bannert, M., Reimann, P., & Sonnenberg, C. (2014). Process mining techniques for analysing patterns and strategies in students’ self-regulated learning. Metacognition and Learning, 9(2), 161–185.

    Article  Google Scholar 

  • Borge, M., & Rosé, C. P. (this volume). Quantitative approaches to language in CSCL. In U. Cress, C. Rosé, A. F. Wise, & J. Oshima (Eds.), International handbook of computer-supported collaborative learning. Cham: Springer.

    Google Scholar 

  • Choquet, C., Iksal, S., Levene, M., & Schoonenboom, J. (2009). Users’ data: Trails analysis. In N. Balacheff, S. Ludvigsen, T. De Jong, A. Lazonder, S. A. Barnes, & L. Montandon (Eds.), Technology-enhanced learning (pp. 195–211). Springer.

    Google Scholar 

  • Cress, U., & Kimmerle, J. (2008). A systemic and cognitive view on collaborative knowledge building with wikis. International Journal of Computer-Supported Collaborative Learning, 3(2), 105–122.

    Article  Google Scholar 

  • Dado, M., Hecking, T., Bodemer, D., & Hoppe, H. U. (2017). On the adoption of social network analysis methods in CSCL research—A network analysis. In B. K. Smith, M. Borge, E. Mercier, & K. Y. Lim (Eds.), Making a difference: Prioritizing equity and access in CSCL, 12th international conference on computer supported collaborative learning (CSCL) 2017 (Vol. 1). Philadelphia, PA: International Society of the Learning Sciences. https://doi.org/10.22318/cscl2017.40.

    Chapter  Google Scholar 

  • Diakopoulos, N. (2016). Accountability in algorithmic decision making. Communications of the ACM, 59(2), 56–62.

    Article  Google Scholar 

  • Doberstein, D., Hecking, T., & Hoppe, H. U. (2017). Sequence patterns in small group work within a large online course. In Proceedings of CRIWG 2017 (CYTED-RITOS International Workshop on Groupware, August 2017) (pp. 104–117). Springer.

    Google Scholar 

  • Dyke, G., Lund, K., & Girardot, J. J. (2010). Tatiana, un environnement d’aide à l’analyse de traces d’interactions humaines. Technique et Science Informatiques, 29(10), 1179–1205.

    Article  Google Scholar 

  • Elkina, M., Fortenbacher, A., & Merceron, A. (2013). The learning analytics application LeMo—Rationals and first results. International Journal of Computing, 12(3), 226–234.

    Google Scholar 

  • Enyedy, N., & Stevens, R. (2014). Analyzing collaboration. In K. R. Sayer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 191–212). Cambridge University Press.

    Google Scholar 

  • Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C. W., & Tseng, V. S. (2014). SPMF: A Java open-source pattern mining library. Journal of Machine Learning Research, 15(1), 3389–3393.

    Google Scholar 

  • Harrer, A., Martínez-Monés, A., & Dimitracopoulou, A. (2009). Users’ data: Collaborative and social analysis. In N. Balacheff, S. Ludvigsen, T. De Jong, A. Lazonder, S. A. Barnes, & L. Montandon (Eds.), Technology-enhanced learning—Principles and products (pp. 175–193). Springer.

    Google Scholar 

  • Hoppe, H. U. (2017). Computational methods for the analysis of learning and knowledge building communities. In C. Lang, G. Siemens, A. F. Wise, & D. Gasevic (Eds.), The handbook of learning analytics (1st ed., pp. 23–33). Society for Learning Analytics Research (SoLAR). dooi: https://doi.org/10.18608/hla17.002

  • Hoppe, H. U., Doberstein, D., & Hecking, T. (2020). Using sequence analysis to determine the well-functioning of small groups in large online courses. International Journal of Artificial Intelligence in Education, 1–20. https://doi.org/10.1007/s40593-020-00229-9

  • Kitto, K., Cross, S., Waters, Z., & Lupton, M. (2015). Learning analytics beyond the LMS: the connected learning analytics toolkit. In Proceedings of the 5th International Conference on Learning Analytics and Knowledge (pp. 11–15). ACM.

    Google Scholar 

  • Koschmann, T., & Zemel, A. (2009). Optical pulsars and black arrows: Discoveries as occasioned productions. The Journal of the Learning Sciences, 18(2), 200–246.

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press.

    Google Scholar 

  • Lee, A. V. Y., & Tan, S. C. (2017). Promising ideas for collective advancement of communal knowledge using temporal analytics and cluster analysis. Journal of Learning Analytics, 4(3), 76–101.

    Article  Google Scholar 

  • Lund, K., & Suthers, D. D. (2013). Methodological dimensions. In D. D. Suthers, K. Lund, C. Rosé, C. Teplovs, & N. Law (Eds.), Productive multivocality in the analysis of group interactions (pp. 21–35). Springer.

    Google Scholar 

  • Martin, K. (2019). Ethical implications and accountability of algorithms. Journal of Business Ethics, 160, 835–850. https://doi.org/10.1007/s10551-018-3921-3.

    Article  Google Scholar 

  • Martínez, A., Dimitriadis, Y., Rubia, B., Gómez, E., & De La Fuente, P. (2003). Combining qualitative evaluation and social network analysis for the study of classroom social interactions. Computers & Education, 41(4), 353–368.

    Article  Google Scholar 

  • Miyake, N. (1986). Constructive interaction and the iterative process of understanding. Cognitive Science, 10, 151–177.

    Article  Google Scholar 

  • Ochoa, X. (2017). Multimodal learning analytics. In C. Lang, G. Siemens, A. F. Wise, & D. Gasévić (Eds.), Handbook of learning analytics (pp. 129–141). Society for Learning Analytics Research.

    Google Scholar 

  • Ochoa, X., Chiluiza, K., Méndez, G., Luzardo, G., Guamán, B., & Castells, J. (2013). Expertise estimation based on simple multimodal features. In Proceedings of the 15th ACM International Conference on Multimodal Interaction (ICMI ‘13) (pp. 583–590). ACM.

    Google Scholar 

  • Oshima, J., Matsuzawa, Y., Oshima, R., & Niihara, Y. (2013). Application of social network analysis to collaborative problem solving discourse: An attempt to capture dynamics of collective knowledge advancement. In D. D. Suthers, K. Lund, C. Rosé, C. Teplovs, & N. Law (Eds.), Productive multivocality in the analysis of group interactions (pp. 225–242). Springer.

    Google Scholar 

  • Oshima, J., Oshima, R., & Matsuzawa, Y. (2012). Knowledge building discourse explorer: A social network analysis application for knowledge building discourse. Educational Technology Research and Development, 60(5), 903–921.

    Article  Google Scholar 

  • Oshima, J., Scardamalia, M., & Bereiter, C. (1996). Collaborative learning processes associated with high and low conceptual progress. Instructional Science, 24, 125–155.

    Article  Google Scholar 

  • Reffay, C., & Chanier, T. (2003). How social network analysis can help to measure cohesion in collaborative distance-learning. In B. Wasson, S. Ludvigsen, & U. Hoppe (Eds.), Designing for change in networked learning environments (pp. 343–352). Springer.

    Google Scholar 

  • Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. Journal of the Learning Sciences, 2(3), 235–276.

    Article  Google Scholar 

  • Sandoval, W. (2014). Conjecture mapping: An approach to systematic educational design research. Journal of the Learning Sciences, 23(1), 18–36.

    Article  Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge creation: Theory, pedagogy, and technology. In K. R. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 397–417). Cambridge University Press.

    Google Scholar 

  • Shaffer, D. W. (2012). Models of situated action: Computer games and the problem of transfer. In C. Steinkuehler, K. D. Squire, & S. A. Barab (Eds.), Games, learning, and society: Learning and meaning in the digital age (pp. 403–431). Cambridge University Press.

    Google Scholar 

  • Shaffer, D. W. (2017). Quantitative ethnography. Cathcart Press.

    Google Scholar 

  • Shaffer, D. W., & Ruis, A. R. (2017). Epistemic network analysis: A worked example of theory-based learning analytics. In C. Lang, G. Siemens, A. F. Wise, & D. Gasévić (Eds.), The handbook of learning analytics (1st ed., pp. 175–187). Society for Learning Analytics Research (SoLAR).

    Google Scholar 

  • Stahl, G. (2016). Constructing dynamic triangles together: The development of mathematical group cognition. Cambridge University Press.

    Google Scholar 

  • Stahl, G., Koschmann, T., & Suthers, D. (2014). Computer-supported collaborative learning. In K. R. Sayer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 479–500). Cambridge University Press.

    Google Scholar 

  • Suthers, D. D., Dwyer, N., Medina, R., & Vatrapu, R. (2010). A framework for conceptualizing, representing, and analyzing distributed interaction. International Journal of Computer-Supported Collaborative Learning, 5(1), 5–42.

    Article  Google Scholar 

  • Suthers, D. D., Lund, K., Rosé, C. P., Teplovs, C., & Law, N. (2013). Productive multivocality in the analysis of group interactions. Springer.

    Google Scholar 

  • Svarovsky, G. N. (2011). Exploring complex engineering learning over time with epistemic network analysis. Journal of Pre-College Engineering Education Research, 1(2), 19–30.

    Google Scholar 

  • Tang, K. Y., Tsai, C. C., & Lin, T. C. (2014). Contemporary intellectual structure of CSCL research (2006–2013): A co-citation network analysis with an education focus. International Journal of Computer-Supported Collaborative Learning, 9(3), 335–363.

    Article  Google Scholar 

  • Trausan-Matu, S., & Slotta, J. D. (this volume). Artifact analysis. In U. Cress, C. Rosé, A. F. Wise, & J. Oshima (Eds.), International handbook of computer-supported collaborative learning. Cham: Springer.

    Google Scholar 

  • van der Aalst, W. (2011). Process mining: Discovery, conformance and enhancement of business processes (Vol. 2). Springer.

    Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.

    Google Scholar 

  • Wise, A. F., & Shaffer, D. W. (2016). Why theory matters more than ever in the age of big data. Journal of Learning Analytics, 2(2), 5–13.

    Article  Google Scholar 

  • Worsley, M., & Blikstein, P. (2014). Deciphering the practices and affordances of different reasoning strategies through multimodal learning analytics. In Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge (MLA ‘14) (pp. 21–27). ACM.

    Google Scholar 

  • Zumbach, J., Muehlenbrock, M., Jansen, M., Reimann, P., & Hoppe, H. U. (2002). Multi-dimensional tracking in virtual learning teams: An exploratory study. In G. Stahl (Ed.), Computer support for collaborative learning: Foundations for a CSCL community (pp. 650–651). International Society of the Learning Sciences.

    Google Scholar 

Further Readings

  • Harrer, A., Martínez-Monés, A., & Dimitracopoulou, A. (2009). Users’ data: Collaborative and social analysis. In N. Balacheff, S. Ludvigsen, T. De Jong, A. Lazonder, S. A. Barnes, & L. Montandon (Eds.), Technology-enhanced learning—Principles and products (pp. 175–193). Springer. This article documents and summarizes earlier discussions (before the advent of learning analytics) about standardizing action-log formats very much from a CSCL perspective under the notion of “interaction analysis.”.

    Google Scholar 

  • Hoppe, H. U. (2017). Computational methods for the analysis of learning and knowledge building communities. In C. Lang, G. Siemens, A. F. Wise, & D. Gasévić (Eds.), The handbook of learning analytics (1st ed., pp. 23–33). Society for Learning Analytics Research (SoLAR). https://doi.org/10.18608/hla17.002. This article classifies and characterizes different types of computational analysis techniques relevant to the analysis of log files (and also learner-generated artifacts). It elaborates on certain distinctions also used in this chapter from a computer science perspective.

  • Oshima, J., Oshima, R., & Fujita, W. (2018). A mixed-methods approach to analyze shared epistemic agency in jigsaw instruction at multiple scales of temporality. Journal of Learning Analytics, 5(1), 10–24. This empirical study discusses how to mix traditional discourse analysis with a new computational approach in the CSCL field. Based on the dialogism, the authors examine student collaborative discourse from the two analytical points of view of how the meaning is jointly constructed.

    Article  Google Scholar 

  • Shaffer, D. W. (2017). Quantitative ethnography. Cathcart Press. In his book, Shaffer proposes a new discipline called quantitative ethnography. The recent development of information technologies and computer science would make it possible for us to treat big data in the CSCL field. Along with a robust epistemic stance, Shaffer explores a new direction of analyzing collaboration computationally.

    Google Scholar 

  • Suthers, D. D., Dwyer, N., Medina, R., & Vatrapu, R. (2010). A framework for conceptualizing, representing, and analyzing distributed interaction. International Journal of Computer-Supported Collaborative Learning, 5(1), 5–42. This is a good example of how theory-building in the analysis of traces from educational conversations goes together with the development of formal representations and analysis methods.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Oshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oshima, J., Hoppe, H.U. (2021). Finding Meaning in Log-File Data. In: Cress, U., Rosé, C., Wise, A.F., Oshima, J. (eds) International Handbook of Computer-Supported Collaborative Learning. Computer-Supported Collaborative Learning Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-65291-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65291-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65290-6

  • Online ISBN: 978-3-030-65291-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics