Skip to main content

Hypernetwork Science: From Multidimensional Networks to Computational Topology

  • Conference paper
  • First Online:
Unifying Themes in Complex Systems X (ICCS 2020)

Abstract

As data structures and mathematical objects used for complex systems modeling, hypergraphs sit nicely poised between on the one hand the world of network models, and on the other that of higher-order mathematical abstractions from algebra, lattice theory, and topology. They are able to represent complex systems interactions more faithfully than graphs and networks, while also being some of the simplest classes of systems representing topological structures as collections of multidimensional objects connected in a particular pattern. In this paper we discuss the role of (undirected) hypergraphs in the science of complex networks, and provide a mathematical overview of the core concepts needed for hypernetwork modeling, including duality and the relationship to bicolored graphs, quantitative adjacency and incidence, the nature of walks in hypergraphs, and available topological relationships and properties. We close with a brief discussion of two example applications: biomedical databases for disease analysis, and domain-name system (DNS) analysis of cyber data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this paper we will deal only with “basic” hypergraphs in the sense of being undirected, unordered, and unlabeled. All of these forms are available and important [3, 16].

  2. 2.

    Hypergraph calculations shown in this paper were produced using PNNL’s open source hypergraph analytical capabilities HyperNetX (HNX, https://github.com/pnnl/HyperNetX) and the Chapel Hypergraph Library (CHGL, https://github.com/pnnl/chgl); and additionally diagrams were produced in HNX.

  3. 3.

    Typically the concept of a bipartite graph is used here, which is a graph that admits to at least one bicoloring function. The resulting differences are interesting, but not significant for this paper.

  4. 4.

    http://geneontology.org/docs/ontology-documentation.

  5. 5.

    https://reactome.org.

  6. 6.

    https://www.ebi.ac.uk/chebi/.

  7. 7.

    https://disease-ontology.org/.

  8. 8.

    https://github.com/callahantiff/PheKnowLator, downloaded on 03/05/20, see also https://github.com/callahantiff/PheKnowLator/wiki/v2-Data-Sources.

  9. 9.

    https://activednsproject.org.

References

  1. Aksoy, S.G., Joslyn, C.A., Marrero, C.O., Praggastis, B., Purvine, E.A.: Hypernetwork science via high-order hypergraph walks. EPJ Data Sci. 9, 16 (2020)

    Google Scholar 

  2. Alon, N.: Transversal numbers of uniform hypergraphs. Graphs Comb. 6(1), 1–4 (1990)

    Article  MathSciNet  Google Scholar 

  3. Ausiello, G., Fanciosa, P.G., Frigioni, D.: Directed hypergraphs: Problems, algorithmic results, and a novel decremental approach. In: ICTCS 2001, LNCS, vol. 2202, pp. 312–328 (2001)

    Google Scholar 

  4. Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  5. Barber, M.J.: Modularity and community detection in bipartite networks. Phys. Rev. E 76(6) (2007). https://doi.org/10.1103/physreve.76.066102

  6. Berge, C., Minieka, E.: Graphs and Hypergraphs. North-Holland (1973)

    Google Scholar 

  7. Chung, F.: The laplacian of a hypergraph. Expanding graphs (DIMACS series), pp. 21–36 (1993)

    Google Scholar 

  8. Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebr. Its Appl. 436(9), 3268–3292 (2012)

    Article  MathSciNet  Google Scholar 

  9. Devine, K., Boman, E., Heaphy, R., Bisseling, R., Catalyurek, U.: Parallel hypergraph partitioning for scientific computing. In: Proceedings 20th IEEE International Parallel & Distributed Processing Symposium. IEEE (2006). https://doi.org/10.1109/ipdps.2006.1639359

  10. Dewar, M., Healy, J., Pérez-Giménez, X., Prałat, P., Proos, J., Reiniger, B., Ternovsky, K.: Subhypergraphs in non-uniform random hypergraphs. Internet Math. (2018). https://doi.org/10.24166/im.03.2018

  11. Dinur, I., Regev, O., Smyth, C.: The hardness of 3-uniform hypergraph coloring. Combinatorica 25(5), 519–535 (2005)

    Article  MathSciNet  Google Scholar 

  12. Dörfler, W., Waller, D.A.: A category-theoretical approach to hypergraphs. Archiv der Mathematik 34(1), 185–192 (1980). https://doi.org/10.1007/bf01224952

    Article  MathSciNet  MATH  Google Scholar 

  13. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. AMS (2000)

    Google Scholar 

  14. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality and clustering in complex hyper-networks. Phys. A: Stat. Mech. Its Appl. 364, 581–594 (2006). https://doi.org/10.1016/j.physa.2005.12.002

    Article  MathSciNet  Google Scholar 

  15. Fong, B., Spivak, D.I.: Hypergraph categories (2019)

    Google Scholar 

  16. Gallo, G., Longo, G., Pallottino, S.: Directed hypergraphs and applications. Discret. Appl. Math. 42, 177–201 (1993)

    Article  MathSciNet  Google Scholar 

  17. Iacopini, I., Petri, G., Barrat, A., Latora, V.: Simplicial models of social contagion. Nat. Commun. 10, 2485 (2019)

    Article  Google Scholar 

  18. jamie.riden: How Fast-Flux Service Networks Work. http://www.honeynet.org/node/132. Last accessed 26 Nov 2018

  19. Javidian, M.A., Lu, L., Valtorta, M., Qang, Z.: On a hypergraph probabilistic graphical model (2018). https://arxiv.org/abs/1811.08372

  20. Johnson, J.: Hypernetworks in the Science of Complex Systems. Imperial College Press, London (2013)

    MATH  Google Scholar 

  21. Joslyn, C.A., Aksoy, S., Arendt, D., Firoz, J., Jenkins, L., Praggastis, B., Purvine, E.A., Zalewski, M.: Hypergraph analytics of domain name system relationships. In: Kaminski, B., et al. (eds.) 17th Workshop on Algorithms and Models for the Web Graph (WAW 2020). Lecture Notes Comput. Sci. 12901, 1–15. Springer (2020)

    Google Scholar 

  22. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. VLSI Des. 11(3), 285–300 (2000). https://doi.org/10.1155/2000/19436

    Article  Google Scholar 

  23. Kirkland, S.: Two-mode networks exhibiting data loss. J. Complex Netw. 6(2), 297–316 (2017). https://doi.org/10.1093/comnet/cnx039

    Article  MathSciNet  MATH  Google Scholar 

  24. Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS Comput. Biol. 5(5), e1000,385 (2009)

    Google Scholar 

  25. Krivelevich, M., Sudakov, B.: Approximate coloring of uniform hypergraphs. J. Algorithms 49(1), 2–12 (2003)

    Article  MathSciNet  Google Scholar 

  26. Larremore, D.B., Clauset, A., Jacobs, A.Z.: Efficiently inferring community structure in bipartite networks. Phys. Rev. E 90(1) (2014). https://doi.org/10.1103/physreve.90.012805

  27. Latapy, M., Magnien, C., Vecchio, N.D.: Basic notions for the analysis of large two-mode networks. Soc. Netw. 30(1), 31–48 (2008). https://doi.org/10.1016/j.socnet.2007.04.006

    Article  Google Scholar 

  28. Leal, W., Restrepo, G.: Formal structure of periodic system of elements. Proc. R. Soc. A. 475 (2019). https://doi.org/10.1098/rspa.2018.0581

  29. Minas, M.: Hypergraphs as a unifrom diagram representation model. In: Proceedings of the 6th International Workshop on Theory and Applications of Graph Transformations (2000). ftp://ftp.informatik.uni-erlangen.de/local/inf2/Papers/tagt98.pdf

  30. Patania, A., Petri, G., Vaccarino, F.: Shape of collaborations. EPJ Data Sci. 6, 18 (2017)

    Article  Google Scholar 

  31. Robins, G., Alexander, M.: Small worlds among interlocking directors: network structure and distance in bipartite graphs. Comput. Math. Organ. Theory 10(1), 69–94 (2004). https://doi.org/10.1023/b:cmot.0000032580.12184.c0

    Article  MATH  Google Scholar 

  32. Rödl, V., Skokan, J.: Regularity lemma for k-uniform hypergraphs. Random Struct. Algorithms 25(1), 1–42 (2004)

    Article  MathSciNet  Google Scholar 

  33. Schmidt, M.: Functorial approach to graph and hypergraph theory (2019)

    Google Scholar 

Download references

Acknowledgements

PNNL-SA-152208. This work was also partially funded under the High Performance Data Analytics (HPDA) program at the Department of Energy’s Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute under Contract DE-ACO6-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cliff A. Joslyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joslyn, C.A. et al. (2021). Hypernetwork Science: From Multidimensional Networks to Computational Topology. In: Braha, D., et al. Unifying Themes in Complex Systems X. ICCS 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-67318-5_25

Download citation

Publish with us

Policies and ethics