Skip to main content

Intelligent and Fuzzy UAV Transportation Applications in Aviation 4.0

  • Chapter
  • First Online:
Intelligent and Fuzzy Techniques in Aviation 4.0

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 372))

Abstract

In the last decade, Aviation 4.0 has attracted lots of researchers’ attention and with huge scientific progress, it has become one of the most important issues that researchers have focused on. According to the literature, different applications have been proposed for Aviation 4.0, especially in the transportation area. The intelligent and fuzzy UAV transportation applications are of the most important applications in Aviation 4.0. In this study, various related researches from the literature are visited under different categories of delivery operation problems by using UAVs such as facility location problems, vehicle routing problems, path-planning problems, and their applications. Moreover, a case study related to the uncertainty condition of UAV applications is considered. Fuzzy mathematical modelling is developed to address the problem, and a fuzzy possibilistic-based method is utilized to deffuzify the model. Then, a genetic algorithm is proposed to solve the problem and the results of some randomly generated cases are obtained and discussed. It is shown that the proposed method is a suitable approach for decision-makers to make an aerial delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ni, D., Yu, G., Rathinam, S.: Unmanned aircraft system and its applications in transportation. J. Advan. Transp. 2017 (2017)

    Google Scholar 

  2. Li, X., et al.: An Aggregate Flow Based Scheduler in Multi-task Cooperated UAVs Network. Chinese Journal of Aeronautics, (2020)

    Google Scholar 

  3. McCormack, E.: Exploring transportation applications of small unmanned aircraft. Inst. Transp. Eng. ITE J. 79(12), 32 (2009)

    Google Scholar 

  4. Mosterman, P.J., Zander, J.: Cyber-physical systems challenges: a needs analysis for collaborating embedded software systems. Softw. Syst. Model. 15(1), 5–16 (2016)

    Article  Google Scholar 

  5. Valdés, R.A., et al.: Aviation 4.0: more safety through automation and digitization. In: Aircraft Technology. IntechOpen, (2018)

    Google Scholar 

  6. Ernest, N., Sathyan, A., Cohen, K.: Genetic fuzzy single and collaborative tasking for UAV operations. In: Multi-Rotor Platform-based UAV Systems, pp. 217–242. Elsevier, (2020)

    Google Scholar 

  7. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  8. Zadeh, L.A.: Fuzzy sets versus probability. Proc. IEEE 68(3), 421–421 (1980)

    Article  MathSciNet  Google Scholar 

  9. Sathyan, A., Ernest, N.D., Cohen, K.: An efficient genetic fuzzy approach to UAV swarm routing. Unmanned Syst. 4(02), 117–127 (2016)

    Article  Google Scholar 

  10. Nisar, T.M., Prabhakar, G.: What factors determine e-satisfaction and consumer spending in e-commerce retailing? J. Retail. Consum. Serv. 39, 135–144 (2017)

    Article  Google Scholar 

  11. James, J., Lam, A.Y.: Autonomous vehicle logistic system: joint routing and charging strategy. IEEE Trans. Intell. Transp. Syst. 19(7), 2175–2187 (2017)

    Google Scholar 

  12. Bidgoli, H.: The Handbook of Technology Management, Supply Chain Management, Marketing and Advertising, and Global Management, vol. 2. Wiley (2010)

    Google Scholar 

  13. Whitwam, R.: Amazon Reveals how Prime Air Drone Delivery will Work, still doesn’t know How much it will Cost. (2016)

    Google Scholar 

  14. Deutsche Post, D.: DHL Parcelcopter Launches Initial Operations for Research Purposes. Press release (2014)

    Google Scholar 

  15. Stewart, J.: Google Tests Drone Deliveries in Project Wing Trials. BBC World Service Radio, (2014)

    Google Scholar 

  16. Kornatowski, P.M., et al.: Last-centimeter personal drone delivery: field deployment and user interaction. IEEE Robot Autom. Lett. 3(4), 3813–3820 (2018)

    Article  Google Scholar 

  17. Li, S., Chen, L.-H.: Optimization of the VRP with single depot based on vehicle coordination strategy. In: 2010 International Conference on Intelligent Computation Technology and Automation. IEEE, (2010)

    Google Scholar 

  18. Lim, A., Wang, F.: Multi-depot vehicle routing problem: a one-stage approach. IEEE Trans. Autom. Sci. Eng. 2(4), 397–402 (2005)

    Article  Google Scholar 

  19. Mester, D., Bräysy, O.: Active-guided evolution strategies for large-scale capacitated vehicle routing problems. Comput. Oper. Res. 34(10), 2964–2975 (2007)

    Article  MATH  Google Scholar 

  20. Dethloff, J.: Vehicle routing and reverse logistics: the vehicle routing problem with simultaneous delivery and pick-up. OR-Spektrum 23(1), 79–96 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nunkaew, W., Phruksaphanrat, B.: A fuzzy goal programming for a multi-depot distribution problem. In: AIP Conference Proceedings. American Institute of Physics, (2010)

    Google Scholar 

  22. Montemanni, R., et al.: Ant colony system for a dynamic vehicle routing problem. J. Comb. Optim. 10(4), 327–343 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pillac, V., et al.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sariklis, D., Powell, S.: A heuristic method for the open vehicle routing problem. J. Oper. Res. Soc. 51(5), 564–573 (2000)

    Article  MATH  Google Scholar 

  25. Rojas Viloria, D., et al.: Unmanned aerial vehicles/drones in vehicle routing problems: a literature review. Int. Trans. Oper. Res. (2020)

    Google Scholar 

  26. Guerriero, F., et al.: A multi-objective approach for unmanned aerial vehicle routing problem with soft time windows constraints. Appl. Math. Model. 38(3), 839–852 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhen, L., et al.: A vehicle routing problem arising in unmanned aerial monitoring. Comput. Oper. Res. 105, 1–11 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nejad, M.G., et al.: An optimization model for cyclic scheduling problem in flexible robotic cells. Int. J. Advan. Manufact. Technol. 95(9–12), 3863–3873 (2018)

    Article  Google Scholar 

  29. Dhein, G., et al.: Minimizing dispersion in multiple drone routing. Comput. Oper. Res. 109, 28–42 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vizvári, B., Guden, H., Nejad, M.G.: Local search based meta-heuristic algorithms for optimizing the cyclic flexible manufacturing cell problem. Ann. Optim. Theory Pract. 1(3), 15–32 (2018)

    Google Scholar 

  31. Alvear, O., et al.: Using UAV-based systems to monitor air pollution in areas with poor accessibility. J. Advan. Transp. 2017 (2017)

    Google Scholar 

  32. Mersheeva, V., Friedrich, G.: Routing for continuous monitoring by multiple micro UAVs in disaster scenarios. In: Proceedings of the 20th European Conference on Artificial Intelligence. IOS Press (2012)

    Google Scholar 

  33. Peng, K., et al.: A hybrid genetic algorithm on routing and scheduling for vehicle-assisted multi-drone parcel delivery. IEEE Access 7, 49191–49200 (2019)

    Article  Google Scholar 

  34. Khan, A., Aftab, F., Zhang, Z.: BICSF: bio-inspired clustering scheme for FANETs. IEEE Access 7, 31446–31456 (2019)

    Article  Google Scholar 

  35. Erdoğan, S., Miller-Hooks, E.: A green vehicle routing problem. Transp. Res. Part E: Logistics Transp. Rev. 48(1), 100–114 (2012)

    Article  Google Scholar 

  36. Lin, C., et al.: Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41(4), 1118–1138 (2014)

    Article  Google Scholar 

  37. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 48(4), 500–520 (2014)

    Article  Google Scholar 

  38. Hiermann, G., et al.: The electric fleet size and mix vehicle routing problem with time windows and recharging stations. Eur. J. Oper. Res. 252(3), 995–1018 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dorling, K., et al.: Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man, Cybern. Syst. 47(1), 70–85 (2016)

    Article  Google Scholar 

  40. Azi, N., Gendreau, M., Potvin, J.-Y.: An adaptive large neighborhood search for a vehicle routing problem with multiple routes. Comput. Oper. Res. 41, 167–173 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hernandez, F., et al.: Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows. Eur. J. Oper. Res. 249(2), 551–559 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cheikh, M., et al.: A variable neighborhood search algorithm for the vehicle routing problem with multiple trips. Electron. Notes Discret. Math. 47, 277–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cattaruzza, D., et al.: A memetic algorithm for the multi trip vehicle routing problem. Eur. J. Oper. Res. 236(3), 833–848 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Coelho, B.N., et al.: A multi-objective green UAV routing problem. Comput. Oper. Res. 88, 306–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. French, S.: 6 Myths about Amazon Prime Air and Drone Delivery, Debunked. MarketWatch, December 2

    Google Scholar 

  46. Welch, A.: A cost-benefit analysis of Amazon prime air. (2015)

    Google Scholar 

  47. Wohlsen, M.: The next big thing you missed: Amazon? s delivery drones could work–they just need trucks. Wired.com (2014)

    Google Scholar 

  48. Yurek, E.E., Ozmutlu, H.C.: A decomposition-based iterative optimization algorithm for traveling salesman problem with drone. Transp. Res. Part C: Emerg. Technol. 91, 249–262 (2018)

    Article  Google Scholar 

  49. Campbell, J.F., Sweeney, D., Zhang, J.: Strategic design for delivery with trucks and drones. Supply Chain Analytics Report SCMA (04 2017), (2017)

    Google Scholar 

  50. Wang, X., Poikonen, S., Golden, B.: The vehicle routing problem with drones: several worst-case results. Optim. Lett. 11(4), 679–697 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling salesman problem with drone. Transp. Sci. 52(4), 965–981 (2018)

    Article  Google Scholar 

  52. Yoon, J.J.: The traveling salesman problem with multiple drones: an optimization model for last-mile delivery. Massachusetts Ins. Technol. (2018)

    Google Scholar 

  53. Moshref-Javadi, M., Hemmati, A., Winkenbach, M.: A truck and drones model for last-mile delivery: a mathematical model and heuristic approach. Appl. Math. Model. 80, 290–318 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Madani, B., Ndiaye, M.: Autonomous vehicles delivery systems classification: introducing a TSP with a moving depot. In 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO). IEEE, (2019)

    Google Scholar 

  55. Moshref-Javadi, M., Lee, S., Winkenbach, M.: Design and evaluation of a multi-trip delivery model with truck and drones. Transp. Res. Part E: Logistics Transp. Rev. 136, 101887 (2020)

    Article  Google Scholar 

  56. Jeong, H.Y., Song, B.D., Lee, S.: Truck-drone hybrid delivery routing: payload-energy dependency and no-fly zones. Int. J. Prod. Econ. 214, 220–233 (2019)

    Article  Google Scholar 

  57. Schermer, D., Moeini, M., Wendt, O.: A hybrid VNS/Tabu search algorithm for solving the vehicle routing problem with drones and en route operations. Comput. Oper. Res. 109, 134–158 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Schermer, D., Moeini, M., Wendt, O.: A matheuristic for the vehicle routing problem with drones and its variants. Transp. Res. Part C: Emer. Technol. 106, 166–204 (2019)

    Article  MATH  Google Scholar 

  59. Sacramento, D., Pisinger, D., Ropke, S.: An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. Transp. Res. Part C: Emer. Technol. 102, 289–315 (2019)

    Article  Google Scholar 

  60. Schermer, D., Moeini, M., Wendt, O.: Algorithms for solving the vehicle routing problem with drones. In: Asian Conference on Intelligent Information and Database Systems. Springer, (2018)

    Google Scholar 

  61. McCunney, B., Cauwenberghe, K.: Simulation Test Bed for Drone-Supported Logistics Systems. (2019)

    Google Scholar 

  62. Carlsson, J.G., Song, S.: Coordinated logistics with a truck and a drone. Manage. Sci. 64(9), 4052–4069 (2018)

    Article  Google Scholar 

  63. Chang, Y.S., Lee, H.J.: Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Expert Syst. Appl. 104, 307–317 (2018)

    Article  Google Scholar 

  64. Luo, Z., Liu, Z., Shi, J.: A two-echelon cooperated routing problem for a ground vehicle and its carried unmanned aerial vehicle. Sensors 17(5), 1144 (2017)

    Article  Google Scholar 

  65. Leung, S.C., et al.: Extended guided tabu search and a new packing algorithm for the two-dimensional loading vehicle routing problem. Comput. Oper. Res. 38(1), 205–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Karak, A., Abdelghany, K.: The hybrid vehicle-drone routing problem for pick-up and delivery services. Transp. Res. Part C: Emer. Technol. 102, 427–449 (2019)

    Article  Google Scholar 

  67. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)

    Article  Google Scholar 

  68. Ham, A.M.: Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming. Transp. Res. Part C: Emer. Technol. 91, 1–14 (2018)

    Article  Google Scholar 

  69. Bekhti, M., et al.: Path planning of unmanned aerial vehicles with terrestrial wireless network tracking. In: 2016 Wireless Days (WD). IEEE, (2016)

    Google Scholar 

  70. Nikolos, I.K., et al.: Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans. Syst., Man, Cybern. Part B (Cybern) 33(6), 898–912 (2003)

    Google Scholar 

  71. Peng, X., Xu, D.: Intelligent online path planning for UAVs in adversarial environments. Int. J. Adv. Rob. Syst. 9(1), 3 (2012)

    Article  Google Scholar 

  72. Kavraki, L.E., et al.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Rob. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  73. LaValle, S.M., Kuffner, J.J., Jr.: Randomized kinodynamic planning. Int. J. Rob. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  74. Zhao, Y., Zheng, Z., Liu, Y.: Survey on computational-intelligence-based UAV path planning. Knowl.-Based Syst. 158, 54–64 (2018)

    Article  Google Scholar 

  75. Nejad, M.G., Kashan, A.H., Shavarani, S.M.: A novel competitive hybrid approach based on grouping evolution strategy algorithm for solving U-shaped assembly line balancing problems. Prod. Eng. Res. Devel. 12(5), 555–566 (2018)

    Article  Google Scholar 

  76. Nejad, M.G., Kashan, A.H.: An effective grouping evolution strategy algorithm enhanced with heuristic methods for assembly line balancing problem. J. Advan. Manuf. Syst. 18(03), 487–509 (2019)

    Article  Google Scholar 

  77. Vatankhah Barenji, R., Ghadiri Nejad, M., Asghari, I. Optimally sized design of a wind/photovoltaic/fuel cell off-grid hybrid energy system by modified-gray wolf optimization algorithm. Energy Environ. 29(6), 1053–1070 (2018)

    Google Scholar 

  78. Mosallaeipour, S., et al.: Mobile robot scheduling for cycle time optimization in flow-shop cells, a case study. Prod. Eng. Res. Devel. 12(1), 83–94 (2018)

    Article  Google Scholar 

  79. Ghadiri Nejad, M., et al.: A mathematical model and simulated annealing algorithm for solving the cyclic scheduling problem of a flexible robotic cell. Advan. Mech. Eng. 10(1), 1687814017753912 (2018)

    Google Scholar 

  80. Pandey, P., Shukla, A., Tiwari, R.: Aerial path planning using meta-heuristics: a survey. In: 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE, (2017)

    Google Scholar 

  81. Kok, K.Y., Rajendran, P.: Differential-evolution control parameter optimization for unmanned aerial vehicle path planning. PLoS ONE 11(3), e0150558 (2016)

    Article  Google Scholar 

  82. Bandeira, T.W., et al.: Analysis of path planning algorithms based on travelling salesman problem embedded in UAVs. In: 2015 Brazilian Symposium on Computing Systems Engineering (SBESC). IEEE, (2015)

    Google Scholar 

  83. Di Franco, C., Buttazzo, G.: Coverage path planning for UAVs photogrammetry with energy and resolution constraints. J. Intell. Rob. Syst. 83(3–4), 445–462 (2016)

    Article  Google Scholar 

  84. Ahmed, S., et al.: Energy efficient path planning techniques for UAV-based systems with space discretization. In: 2016 IEEE Wireless Communications and Networking Conference. IEEE. (2016)

    Google Scholar 

  85. Gautam, S.A., Verma, N.: Path planning for unmanned aerial vehicle based on genetic algorithm & artificial neural network in 3D. In: 2014 International Conference on Data Mining and Intelligent Computing (ICDMIC). IEEE, (2014)

    Google Scholar 

  86. Mardani, A., Chiaberge, M., Giaccone, P.: Communication-aware UAV path planning . IEEE Access 7, 52609–52621 (2019)

    Article  Google Scholar 

  87. Niu, L., Zhuo, G.: An improved real 3D A* algorithm for difficult path finding situation. Proceeding of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, p. 37. (2008)

    Google Scholar 

  88. Golabi, M., et al.: Bypassing or flying above the obstacles? A novel multi-objective UAV path planning problem. arXiv preprint arXiv:2004.08279, (2020)

  89. Golabi, M., Izbirak, G., Arkat, J.: Multiple-server facility location problem with stochastic demands along the network edges. J. Eng. Res. 6(4) (2018)

    Google Scholar 

  90. Ghadiri Nejad, M., Banar, M.: Emergency response time minimization by incorporating ground and aerial transportation. Ann. Optim. Theor. Pract. 1(1), 43–57 (2018)

    Google Scholar 

  91. Klose, A., Drexl, A.: Facility location models for distribution system design. Eur. J. Oper. Res. 162(1), 4–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  92. Hale, T.S., Moberg, C.R.: Location science research: a review. Ann. Oper. Res. 123(1–4), 21–35 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  93. Arabani, A.B., Farahani, R.Z.: Facility location dynamics: an overview of classifications and applications. Comput. Ind. Eng. 62(1), 408–420 (2012)

    Article  Google Scholar 

  94. Daskin, M.S., Maass, K.L.: The p-median problem. In: Location Science. pp. 21–45, Springer, (2015)

    Google Scholar 

  95. Jamshidi, M., Median location problem. In: Facility Location. pp. 177–191. Springer, (2009)

    Google Scholar 

  96. Mladenović, N., et al.: The p-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  97. Berman, O., Krass, D.: The generalized maximal covering location problem. Comput. Oper. Res. 29(6), 563–581 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  98. Church, R., ReVelle, C.: The maximal covering location problem. In: Papers of the Regional Science Association. Springer (1974)

    Google Scholar 

  99. Garfinkel, R., Neebe, A., Rao, M.: The m-center problem: minimax facility location. Manage. Sci. 23(10), 1133–1142 (1977)

    Article  MATH  Google Scholar 

  100. Tamir, A.: The k-centrum multi-facility location problem. Discrete Appl. Math. 109(3), 293–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  101. Ghadirinejad, M., et al.: A stochastic model for the ethanol pharmacokinetics. Iran. J. Public Health 45(9), 1170 (2016)

    Google Scholar 

  102. Bieniek, M.: A note on the facility location problem with stochastic demands. Omega 55, 53–60 (2015)

    Article  Google Scholar 

  103. Snyder, L.V.: Facility location under uncertainty: a review. IIE Trans. 38(7), 547–564 (2006)

    Article  Google Scholar 

  104. Melkote, S., Daskin, M.S.: Capacitated facility location/network design problems. Eur. J. Oper. Res. 129(3), 481–495 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  105. Bespamyatnikh, S., et al.: Mobile facility location. In: Proceedings of the 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications. (2000)

    Google Scholar 

  106. Raghavan, S., Sahin, M., Salman, F.S.: The capacitated mobile facility location problem. Eur. J. Oper. Res. 277(2), 507–520 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  107. Hong, I., Kuby, M., Murray, A.T.: A range-restricted recharging station coverage model for drone delivery service planning. Transp. Res. Part C: Emerg. Technol. 90, 198–212 (2018)

    Article  Google Scholar 

  108. Boujelben, M.K., Gicquel, C.: Efficient solution approaches for locating electric vehicle fast charging stations under driving range uncertainty. Comput. Oper. Res. 109, 288–299 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  109. Chauhan, D., Unnikrishnan, A., Figliozzi, M.: Maximum coverage capacitated facility location problem with range constrained drones. Transp. Res. Part C: Emerg. Technol. 99, 1–18 (2019)

    Google Scholar 

  110. Pulver, A., Wei, R.: Optimizing the spatial location of medical drones. Appl. Geogr. 90, 9–16 (2018)

    Article  Google Scholar 

  111. Kim, D., Lee, K., Moon, I.: Stochastic facility location model for drones considering uncertain flight distance. Ann. Oper. Res. 283(1), 1283–1302 (2019)

    Article  MathSciNet  Google Scholar 

  112. Golabi, M., Shavarani, S.M., Izbirak, G.: An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake. Nat. Hazards 87(3), 1545–1565 (2017)

    Article  Google Scholar 

  113. Shavarani, S.M., Golabi, M., Izbirak, G.: A capacitated biobjective location problem with uniformly distributed demands in the UAV—supported delivery operation. Int. Trans. Oper. Res. (2019)

    Google Scholar 

  114. Shavarani, S.M., et al.: Application of hierarchical facility location problem for optimization of a drone delivery system: a case study of Amazon prime air in the city of San Francisco. Int. J. Advan. Manufact. Technol. 95(9–12), 3141–3153 (2018)

    Article  Google Scholar 

  115. Shavarani, S.M., et al.: A congested capacitated multi-level fuzzy facility location problem: an efficient drone delivery system. Comput. Oper. Res. 108, 57–68 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  116. Kelner, J.M., Ziółkowski, C.: Doppler effect-based automatic landing procedure for UAV in difficult access environments. J. Advan. Transp. 2017 (2017)

    Google Scholar 

  117. Yang, Y., et al.: Robust optimization for integrated scrap steel charge considering uncertain metal elements concentrations and production scheduling under time-of-use electricity tariff. J. Cleaner Prod. 176, 800–812 (2018)

    Article  Google Scholar 

  118. Chen, P., et al.: Surrogate safety analysis of pedestrian-vehicle conflict at intersections using unmanned aerial vehicle videos. J. Advan. Transp. 2017 (2017)

    Google Scholar 

  119. Xu, Y., et al.: Car detection from low-altitude UAV imagery with the faster R-CNN. J. Advan. Transp. 2017 (2017)

    Google Scholar 

  120. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  121. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  122. Jiménez, M.: Ranking fuzzy numbers through the comparison of its expected intervals. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 4(04), 379–388 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  123. Jiménez, M., et al.: Linear programming with fuzzy parameters: an interactive method resolution. Eur. J. Oper. Res. 177(3), 1599–1609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  124. Parra, M.A., et al.: Solving a multiobjective possibilistic problem through compromise programming. Eur. J. Oper. Res. 164(3), 748–759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  125. Holland, J.H.: Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  126. Nejad, M.G., et al.: Process sequencing for a pick-and-place robot in a real-life flexible robotic cell. Int. J. Advan. Manuf. Technol. 103(9–12), 3613–3627 (2019)

    Article  Google Scholar 

  127. Nejad, M.G., Güden, H., Vizvári, B.: Time minimization in flexible robotic cells considering intermediate input buffers: a comparative study of three well-known problems. Int. J. Comput. Integr. Manuf. 32(8), 809–819 (2019)

    Article  Google Scholar 

  128. Nejad, M.G., et al.: Trade-off between process scheduling and production cost in cyclic flexible robotic cells. Int. J. Advan. Manuf. Technol. 96(1–4), 1081–1091 (2018)

    Article  Google Scholar 

  129. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazyar Ghadiri Nejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golabi, M., Nejad, M.G. (2022). Intelligent and Fuzzy UAV Transportation Applications in Aviation 4.0. In: Kahraman, C., Aydın, S. (eds) Intelligent and Fuzzy Techniques in Aviation 4.0. Studies in Systems, Decision and Control, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-75067-1_19

Download citation

Publish with us

Policies and ethics