Skip to main content

Antifungal Compounds of Plant Growth-Promoting Bacillus Species

  • Chapter
  • First Online:
Antifungal Metabolites of Rhizobacteria for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungal pathogens are one of the major threats to global food safety and security. Chemical fungicides are highly effective and convenient for their management. Unfortunately, indiscriminate use of fungicides poses serious threats on ecosystem as well as on every kind of living organism dwelling on the earth. At present, Bacillus-based biotic stress management emerged as a cheap, economical, and sustainable method for profitable agricultural productivity owing to their prospective antagonistic attribution in the management of plant pathogens. A large number of published research work portrayed the antagonistic features of the Bacillus strains and designated Bacillus genus as a storehouse of diverse types of antifungal compounds of diverse structures, as 5–8% region of the Bacillus genome associated with the biosynthesis of secondary metabolites. Besides this, diverse species of Bacillus strains such as B. subtilis, B. amyloliquefaciens, B. cereus, B. pumilus, and B. thuringiensis have been shown to avert negative influence of pathogen invasion on plants by supressing fungal pathogens via competition for nutrients and ecological space, synthesis of antifungal compounds (lipopeptides, enzymes, and antibiotics), and inducing systemic resistance. Briefly, in this chapter, we discuss the wide array of antifungal compounds produced by Bacillus species, their diversity, and antagonistic attributes for ecological and economical management of fungal pathogens in agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah RAB, Stedel C, Garagounis C, Nefzi A, Jabnoun-Khiareddine H, Papadopoulou KK, Daami-Remadi M (2017) Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of fusarium wilt by endophytic bacillus spp. in tomato. Crop Prot 99:45–58

    Article  CAS  Google Scholar 

  • Acurio Vásconez RD, Moya EMT, Yépez LAC, Chiluisa-Utreras VP, VacaSuquillo ID (2020) Evaluation of bacillus megaterium strain AB4 as a potential biocontrol agent of Alternaria japonica, a mycopathogen of Brassica oleracea var. italica. Biotechnol Rep 26(e00454)

    Google Scholar 

  • Akocak PB, Churey JJ, Worobo RW (2015) Antagonistic effect of chitinolytic pseudomonas and bacillus on growth of fungal hyphae and spores of aflatoxigenic aspergillus flavus. Food Biosci 10:48–58

    Article  CAS  Google Scholar 

  • Akram W, Anjum T, Ali B (2016) Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against fusarium wilt. Front Plant Sci 7:498

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleti G, Sessitsch A, Brader G (2015) Genome mining: prediction of lipopeptides and polyketides from bacillus and related Firmicutes. Comput Struct Biotechnol 13:192–203

    Article  CAS  Google Scholar 

  • Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R, Sessitsch A, Brader G (2016) Surfactin variants mediate species-specific biofilm formation and root colonization in bacillus. Environ Microbial 18(8):2634–2645

    Article  CAS  Google Scholar 

  • Blake C, Christensen MN, Kovács ÁT (2021) Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant-Microbe Interact 34(1):15–25

    Article  CAS  PubMed  Google Scholar 

  • Brzezinska MS, Kalwasińska A, Świątczak J, Żero K, Jankiewicz U (2020) Exploring the properties of chitinolytic bacillus isolates for the pathogens biological control. Microb Pathog 148:104462

    Article  CAS  Google Scholar 

  • Cai XC, Liu CH, Wang BT, Xue YR (2017) Genomic and metabolic traits endow bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiol Res 196:89–94

    Article  CAS  PubMed  Google Scholar 

  • Calvo H, Marco P, Blanco D, Oria R, Venturini ME (2017) Potential of a new strain of bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbial 63:101–110

    Article  CAS  Google Scholar 

  • Caulier S, Gillis A, Colau G, Licciardi F, Liépin M, Desoignies N, Modrie P, Legrève A, Mahillon J, Bragard C (2018) Versatile antagonistic activities of soil-borne bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol 9:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8(2):281–295

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T (2020) Inhibitory effects of linear Lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae Triticum. Front Microbiol 11:665. https://doi.org/10.3389/fmicb.2020.00665

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Debnath D, Mahapatra S, Das S (2021) Role of endophytes in plant disease management. In: Singh KP, Jahagirdar S, Sarma BK (eds) Emerging trends in plant pathology. Springer, Singapore, pp 399–424. https://doi.org/10.1007/978-981-15-6275-4_19

    Chapter  Google Scholar 

  • Chandler S, Van Hese N, Coutte F, Jacques P, Monica H, De Vleesschauwer D (2015) Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiol Mol Plant Pathol 91:20–30

    Article  CAS  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15(3):848–864

    Article  PubMed  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated bacillus amyloliquefaciens FZB42–a review. Front Microbiol 6:780

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFilippi S, Groulx E, Megalla M, Mohamed R, Avis TJ (2018) Fungal competitors affect production of antimicrobial Lipopeptides in Bacillus subtilis strain B9–5. J Chem Ecol 44(4):374–383

    Article  CAS  PubMed  Google Scholar 

  • Dimkić I, Berić T, Stević T, Pavlović S, Šavikin K, Fira D, Stanković S (2015) Additive and synergistic effects of bacillus spp. isolates and essential oils on the control of phytopathogenic and saprophytic fungi from medicinal plants and marigold seeds. Biol Control 87:6–13

    Article  CAS  Google Scholar 

  • Dorighello DV, Forner C, de Campos RMVB, Bettiol W (2020) Management of Asian soybean rust with Bacillus subtilis in sequential and alternating fungicide applications. Australas Plant Pathol 49(1):79–86

    Article  CAS  Google Scholar 

  • Douriet-Gámez NR, Maldonado-Mendoza IE, Ibarra-Laclette E, Blom J, Calderón-Vázquez CL (2018) Genomic analysis of bacillus sp. strain B25, a biocontrol agent of maize pathogen fusarium verticillioides. Curr Microbiol 75(3):247–255

    Article  PubMed  CAS  Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703

    Google Scholar 

  • Fan HY, Ru JJ, Zhang YY, Wang Q, Li Y (2017) Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol Res 199:89–97

    Article  CAS  PubMed  Google Scholar 

  • Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clément C, Barka EA, Jacquard C, Dorey S (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16(2):177–187

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39

    Article  Google Scholar 

  • Gao L, Guo J, Fan Y, Ma Z, Lu Z, Zhang C, Zhao H, Bie X (2018) Module and individual domain deletions of NRPS to produce plipastatin derivatives in Bacillus subtilis. Microb Cell Factories 17(1):1–13

    Article  CAS  Google Scholar 

  • García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Perez-Garcia A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb Biotechnol 6:264–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gong AD, Li HP, Yuan QS, Song XS, Yao W, He WJ, Zhang JB, Liao YC (2015) Antagonistic mechanism of iturin a and plipastatin a from bacillus amyloliquefaciens S76-3 from wheat spikes against fusarium graminearum. PLoS One 10(2):e0116871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goswami SK, Kashyap PL, Awasthi S (2019) Deciphering rhizosphere microbiome for the development of novel bacterial consortium and its evaluation for salt stress management in solanaceous crops in India. Indian Phytopathol 72:479–488. https://doi.org/10.1007/s42360-019-00174-1

    Article  Google Scholar 

  • Gotor-Vila A, Teixidó N, Di Francesco A, Usall J, Ugolini L, Torres R, Mari M (2017) Antifungal effect of volatile organic compounds produced by bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiol 64:219–225

    Article  CAS  PubMed  Google Scholar 

  • Guardado-Valdivia L, Tovar-Pérez E, Chacón-López A, López-García U, Gutiérrez-Martínez P, Stoll A, Aguilera S (2018) Identification and characterization of a new bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana). Microbiol Res 210:26–32

    Article  PubMed  Google Scholar 

  • Hamid B, Zaman M, Farooq S, Fatima S, Sayyed RZ, Baba ZA, Sheikh TA, Reddy MS, El Enshasy H, Gafur A, Suriani NL (2021) Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops. Sustainability 21(13):2856. https://doi.org/10.3390/su13052856

    Article  CAS  Google Scholar 

  • Heidarzadeh N, Baghaee-Ravari S (2015) Application of Bacillus pumilus as a potential biocontrol agent of fusarium wilt of tomato. Arch Phytopathol Plant Protect 48(13–16):841–849

    Article  CAS  Google Scholar 

  • Hinarejos E, Castellano M, Rodrigo I, Bellés JM, Conejero V, López-Gresa MP, Lisón P (2016) Bacillus subtilis IAB/BS03 as a potential biological control agent. Eur J Plant Pathol 146(3):597–608

    Article  CAS  Google Scholar 

  • Hossain A, Islam Masum MM, Wu X, Abdallah Y, Ogunyemi SO, Wang Y, Sun G, Li B, An Q (2020) Screening of bacillus strains in biocontrol of pathogen Dickeya dadantii causing stem and root rot disease of sweet potato. Biocontrol Sci Tech 30(11):1180–1198

    Article  Google Scholar 

  • Islam MR, Jeong YT, Lee YS, Song CH (2012) Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology 40(1):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N (2016) Emergence of wheat blast in Bangladesh was caused by a south American lineage of Magnaporthe oryzae. BMC Biol 14(1):1–1. https://doi.org/10.1186/s12915-016-0309-7

    Article  Google Scholar 

  • Islam MT, Rahman MM, Pandey P, Boehme MH, Haesaert G (2019) Bacilli and Agrobiotechnology: Phytostimulation and biocontrol. Springer, Cham. https://doi.org/10.1007/978-3-030-15175-1

    Book  Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from bacillus spp. In: Soberón-Chávez G (ed) Biosurfactants, Microbiology monographs, vol, vol 20. Springer, Berlin, Heidelberg, pp 57–91. https://doi.org/10.1007/978-3-642-14490-5_3

    Chapter  Google Scholar 

  • Jadhav HP, Shaikh SS, Sayyed RZ (2017) Role of hydrolytic enzymes of Rhizoflora in biocontrol of fungal Phytopathogens. In: An overview in Rhizotrophs : plant growth promotion to bioremediation. Springer, pp 183–203

    Chapter  Google Scholar 

  • Jamali H, Sharma A, Kashyap PL, Roohi SAK (2018) Exploitation of multifarious abiotic stresses, antagonistic activity and plant growth promoting attributes of bacillus amyloliquefaciens AH53 for sustainable agriculture production. Int J Curr Microbiol App Sci 7(10):751–763. https://doi.org/10.20546/ijcmas.2018.710.083

    Article  CAS  Google Scholar 

  • Jiang CH, Liao MJ, Wang HK, Zheng MZ, Xu JJ, Guo JH (2018) Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper graymold caused by botrytis cinerea. Biol Control 126:147–157

    Article  Google Scholar 

  • Ju R, Zhao Y, Li J, Jiang H, Liu P, Yang T, Bao Z, Zhou B, Zhou X, Liu X (2014) Identification and evaluation of a potential biocontrol agent, Bacillus subtilis, against fusarium spp. in apple seedlings. Ann Microbiol 64(1):377–383

    Article  Google Scholar 

  • Kaspar F, Neubauer P, Gimpel M (2019) Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. J Nat Prod 82(7):2038–2053

    Article  CAS  PubMed  Google Scholar 

  • Kesaulya H, Hasinu JV, Tuhumury GN (2018) Potential of bacillus spp produces siderophores insuppressing thewilt disease of banana plants. In: IOP Conference Series: Earth and Environmental Science, vol 102, No. 1. IOP Publishing, p 012016

    Google Scholar 

  • Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK (2020a) Functional characterization of endophytic bacilli frompearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosyst 154(4):503–514. https://doi.org/10.1080/11263504.2019.1651773

    Article  Google Scholar 

  • Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK (2020b) Plant growth promoting and antifungal activity in endophytic bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol 51(1):229–241. https://doi.org/10.1007/s42770-019-00172-5

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha P, Srivastava R, Pandiyan K, Singh A, Chakdar H, Kashyap PL, Bhardwaj AK, Murugan K, Karthikeyan N, Bagul SY, Srivastava AK, Saxena AK (2021) Enhancement in plant growth and zinc biofortification of chickpea (Cicer arietinum L.) by Bacillus altitudinis. J Soil Sci Plant Nutr 21:922–935. https://doi.org/10.1007/s42729-021-00411-5

    Article  CAS  Google Scholar 

  • Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R (2014) Responses of beneficial bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol 5:636

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Gu Y, Li J, Xu M, Wei Q, Wang Y (2015) Biocontrol agent bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Front Microbiol 6:883

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang Y, Wei Z, Guan Z, Cai Y, Liao X (2016) Antifungal activity of isolated bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis. PLoS One 11(9):e0162125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Wang R, Liu J, Xu L, Ji P, Sun L, Pan H, Jiang B, Li L (2019) Identification of a biocontrol agent Bacillus vallismortis BV23 and assessment of effects of its metabolites on fusarium graminearum causing corn stalk rot. Biocontrol Sci Tech 29(3):263–275

    Article  Google Scholar 

  • Li X, Gao X, Zhang S, Jiang Z, Yang H, Liu X, Jiang Q, Zhang X (2020) Characterization of a bacillus velezensis with antibacterial activity and inhibitory effect on common aquatic pathogens. Aquaculture 523:735165

    Article  CAS  Google Scholar 

  • Liu CH, Wu K, Chu TW, Wu TM (2018) Dietary supplementation of probiotic, Bacillus subtilis E20, enhances the growth performance and disease resistance against vibrio alginolyticus in parrot fish (Oplegnathus fasciatus). Aquac Int 26(1):63–74

    Article  CAS  Google Scholar 

  • Luo C, Liu X, Zhou H, Wang X, Chen Z (2015) Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl Environ Microbiol 81(1):422

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra S, Rayanoothala P, Solanki MK, Das S (2020) Wheat microbiome: present status and future perspective. In: Solanki M, Kashyap P, Kumari B (eds) Phytobiomes: current insights and future vistas. Springer, Singapore, pp 191–223. https://doi.org/10.1007/978-981-15-3151-4_8

    Chapter  Google Scholar 

  • Mahapatra S, Chakraborty C, Samanta M, Das S, Islam T (2022a) Current Understanding and Future Directions of Biocontrol of Plant Diseases by Bacillus spp., with Special Reference to Induced Systemic Resistance. In: Islam MT, Rahman M, Panday P (eds) Bacilli in Agrobiotechnology. Bacilli in climate resilient agriculture and bioprospecting. Springer, Cham

    Google Scholar 

  • Mahapatra S, Chakraborty S, Rayanoothala P, Das S, Bishnoi SK, Kumar S (2022b) Antimicrobial Agents for Wheat Disease Management: Mode of Action and Its Application. In: Kashyap PL, Gupta V, Gupta OP, Sendhil R, Gopalreddy K, Jasrotia P, Singh GP (eds) New Horizons in Wheat and Barley Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-4134-3_6

  • Mariutto M, Ongena M (2015) Molecular patterns of rhizobacteria involved in plant immunity elicitation. In advances in botanical research. Academic Press 75:21–56

    Google Scholar 

  • Martínez-Álvarez JC, Castro-Martínez C, Sánchez-Peña P, Gutiérrez-Dorado R, Maldonado-Mendoza IE (2016) Development of a powder formulation based on Bacillus cereus sensulato strain B25 spores for biological control of fusarium verticillioides in maize plants. World J Microbiol Biotechnol 32:75

    Article  PubMed  CAS  Google Scholar 

  • Mejri S, Siah A, Coutte F, Magnin-Robert M, Randoux B, Tisserant B, Krier F, Jacques P, Reignault P, Halama P (2018) Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Environ Sci Pollut Res 25(30):29822–29833

    Article  CAS  Google Scholar 

  • Mielich-Süss B, Lopez D (2015) Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol 17(3):555–565

    Article  PubMed  Google Scholar 

  • Mihalache G, Balaes T, Gostin I, Stefan M, Coutte F, Krier F (2018) Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ Sci Pollut Res 25(30):29784–29793

    Google Scholar 

  • Mnif I, Ghribi D (2015) Potential of bacterial derived biopesticides in pest management. Crop Prot 77:52–64

    Article  Google Scholar 

  • Mondol MA, Shin HJ, Islam MT (2013) Diversity of secondary metabolites from marine bacillus species: chemistry and biological activity. Mar Drugs 11(8):2846–2872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller S, Strack SN, Hoefler BC, Straight PD, Kearns DB, Kirby JR (2014) Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microbiol 80(18):5603–5610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nithyapriya S, Lalitha S, Sayyed RZ, Reddy MS, Dailin DJ, El Enshasy HA, Luh N, Herlambang S (2021) Production, purification, and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustainability 13:5394. https://doi.org/10.3390/su13105394

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2016) Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J Exp Biol 54:286–290

    Google Scholar 

  • Podile A, Prakash A (1996) Lysis and biological control of aspergillus Niger by Bacillus subtilis AF 1. Can J Microbiol 42(6):533–538

    Article  CAS  PubMed  Google Scholar 

  • Pourakbar L, Moghaddam SS, Enshasy HAE, Sayyed RZ (2021) Antifungal Activity of the Extract of a Macroalgae, Gracilariopsis persica, against Four Plant Pathogenic Fungi. Plants 10(9):1781

    Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from bacillus and pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Uddin W, Wenner NG (2015) Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of bacillus amyloliquefaciens. Mol Plant Pathol 16:546–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M, Miah MG, Rahman M, Islam MT (2018) Plant probiotic bacteria bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8(1):1–11

    Article  Google Scholar 

  • Rai P, Sharma A, Saxena P, Soni AP, Chakdar H, Kashyap PL, Srivastava AK, Sharma AK (2015) Comparison of molecular and phenetic typing methods to assess diversity of selected members of the genus bacillus. Microbiology 84:236–246. https://doi.org/10.1134/S0026261715020113

    Article  CAS  Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 12(11):e0187412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rayanoothala P, Divya M, Mahapatra S, Das S (2021) Microbial biofilm: formation, quorum sensing, and its applications in plant disease management. In: Emerging trends in plant pathology. Springer, Singapore, pp 385–398. https://doi.org/10.1007/978-981-15-6275-4_18

    Chapter  Google Scholar 

  • Raza W, Yuan J, Ling N, Huang Q, Shen Q (2015) Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against fusarium oxysporum f. spp. niveum. Biol Control 80:89–95

    Article  CAS  Google Scholar 

  • Rodríguez J, Tonelli ML, Figueredo MS, Ibáñez F, Fabra A (2018) The lipopeptide surfactin triggers induced systemic resistance and priming state responses in Arachis hypogaea L. Eur J Plant Pathol 152(3):845–851

    Article  CAS  Google Scholar 

  • Romero D (2013) Bacterial determinants of the social behavior of Bacillus subtilis. Res Microbiol 164(7):788–798

    Article  PubMed  Google Scholar 

  • Roongsawang N, Washio K, Morikawa M (2011) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12(1):141–172

    Article  CAS  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4:519–537

    Article  Google Scholar 

  • Senol M, Nadaroglu H, Dikbas N, Kotan R (2014) Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against fusarium culmorum. Ann Clin Microbiol Antimicrobial 13(1):35

    Article  CAS  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459

    Article  CAS  Google Scholar 

  • Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Singh RN, Kaushik R, Saxena AK, Sharma AK (2015) Deciphering diversity of salt-tolerant bacilli from saline soils of eastern indo-gangetic plains of India. Geomicrobiol J 32:170–180. https://doi.org/10.1080/01490451.2014.938205

    Article  CAS  Google Scholar 

  • Sharma A, Kashyap PL, Srivastava AK, Bansal YK, Kaushik R (2019) Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits. Eur J Plant Pathol 153:787–800. https://doi.org/10.1007/s10658-018-1592-7

    Article  CAS  Google Scholar 

  • Singh RK, Kumar PD, Solanki MK, Singh P, Srivastva AK, Kumar S, Kashyap PL, Saxena AK, Singhal PK, Arora DK (2013) Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J Basic Microbiol 53(5):451–460. https://doi.org/10.1002/jobm.201100590

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Kumar DP, Singh P, Solanki MK, Srivastava S, Kashyap PL, Kumar S, Srivastava AK, Singhal PK, Arora DK (2014) Multifarious plant growth promoting characteristics of chickpea rhizosphere associated bacilli help to suppress soil-borne pathogens. Plant Growth Regul 73(1):91–101. https://doi.org/10.1007/s10725-013-9870-z

    Article  CAS  Google Scholar 

  • Slimene IB, Tabbene O, Gharbi D, Mnasri B, Schmitter JM, Urdaci MC, Limam F (2015) Isolation of a chitinolytic bacillus licheniformis S213 strain exerting a biological control against Phoma medicaginis infection. Appl Biochem Biotechnol 175(7):3494–3506

    Article  PubMed  CAS  Google Scholar 

  • Solanki MK, Robert AS, Singh RK, Kumar S, Pandey AK, Srivastava AK, Arora DK (2012a) Characterization of mycolytic enzymes of bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr Microbiol 65(3):330–336

    Article  CAS  PubMed  Google Scholar 

  • Solanki MK, Kumar S, Pandey AK, Srivastava S, Singh RK, Kashyap PL, Srivastava AK, Arora DK (2012b) Diversity and antagonistic potential of bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Tech 22(2):203–217. https://doi.org/10.1080/09583157.2011.649713

    Article  Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK (2015) Characterization of antagonistic-potential of two bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. J Basic Microbiol 55(1):82–90. https://doi.org/10.1002/jobm.201300528

    Article  CAS  PubMed  Google Scholar 

  • Stoica RM, Moscovici M, Tomulescu C, Casarica A, Babeanu N, Popa O, Kahraman HA (2019) Antimicrobial compounds of the genus bacillus: a review. Rom Biotechnol Lett 24(6):1111–1119. https://doi.org/10.25083/rbl/24.6/1111.1119

    Article  CAS  Google Scholar 

  • Surovy MZ, Gupta DR, Mahmud NU, Dame ZT, Roy PK, Islam MT (2019) Genomics and post-genomics approaches for elucidating molecular mechanisms of plant growth-promoting bacilli. In: Islam M, Rahman M, Pandey P, Boehme M, Haesaert G (eds) Bacilli and Agrobiotechnology: Phytostimulation and biocontrol. Bacilli in climate resilient agriculture and bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-15175-1_10

    Chapter  Google Scholar 

  • Symmank H, Franke P, Saenger W, Bernhard F (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng 15(11):913–921

    Article  CAS  PubMed  Google Scholar 

  • Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80(1):7–12

    Google Scholar 

  • Vinay JU, Naik MK, Rangeshwaran R, Chennappa G, Shaikh SS, Sayyed RZ (2016) Detection of antimicrobial traits in fluorescent pseudomonads and molecular characterization of an antibiotic pyoluteorin, 3. Biotech 6(227):1–11

    Google Scholar 

  • Waewthongrak W, Pisuchpen S, Leelasuphakul W (2015) Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatumSacc.) decay in citrus fruit. Postharvest Biol Tec 99:44–49

    Article  CAS  Google Scholar 

  • Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R, Ruan Y, Shen Q (2013) Effects of novel bioorganic fertilizer produced by bacillus amyloliquefaciens W19 on antagonism of fusarium wilt of banana. Biol Fertil Soils 49(4):435–446

    Article  Google Scholar 

  • Wang T, Liang Y, Wu MB, Chen ZJ, Yang LR (2015) Natural products from Bacillus subtilis with antimicrobial properties. Chin J Chem Eng 23(4):744–754

    Article  CAS  Google Scholar 

  • Wang S, Sun L, Zhang W, Chi F, Hao X, Bian J, Li Y (2020) Bacillus velezensis BM21, a potential and efficient biocontrol agent in control of corn stalk rot caused by fusarium graminearum. Egypt J Biol Pest Control 30(1):9

    Article  Google Scholar 

  • Wu Y, Chen T, Liu Y, Lv X, Li J, Du G, Ledesma-Amaro R, Liu L (2018) CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng 49:232–241

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R (2013) Contribution of bacillomycin D in bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol 79(3):808–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AK, Manna S, Pandiyan K, Singh A, Kumar M, Chakdar H, Kashyap PL, Srivastava AK (2016) Isolation and characterization of biosurfactant producing bacillus sp. from diesel fuel-contaminated site. Microbiology 85:6–62. https://doi.org/10.1134/S0026261716010161

    Article  CAS  Google Scholar 

  • Yamamoto S, Shiraishi S, Suzuki S (2015) Are cyclic lipopeptides produced by bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett Appl Microbiol 60(4):379–386

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Han X, Zhang F, Goodwin PH, Yang Y, Li J, Xia M, Sun R, Jia B, Zhang J, Quan X (2018) Screening bacillus species as biological control agents of Gaeumannomyces graminis var. tritici on wheat. Biol Control 118:1–9

    Article  Google Scholar 

  • Yaseen Y, Diop A, Gancel F, Bechet M, Jacques P, Drider D (2018) Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Arch Microbiol 200(5):783–791

    Google Scholar 

  • You C, Zhang C, Kong F, Feng C, Wang J (2016) Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl–mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol Eng 91:119–125

    Article  Google Scholar 

  • Youcef-Ali M, Chaouche NK, Dehimat L, Bataich EI, Mounira KARA, Cawoy HE, Thonart P (2014) Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis. AfrJ Microbiol Res 8(6):476–484

    Article  CAS  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47(2):138–145

    Article  Google Scholar 

  • Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of bacillus amyloliquefaciens NJN-6 volatile compounds against fusarium oxysporum f. spp. cubense. Appl Environ Microbiol 78(16):5942–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakaria AK, Sayyed RZ, Enshasy HE (2019) Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. In: Plant growth promoting Rhizobacteria for sustainable stress management Vol II Rhizobacteria in biotic stress management. Springer, Singapore, pp 1–36

    Google Scholar 

  • Zeriouh H, de Vicente A, Pérez-García A, Romero D (2014) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol 16(7):2196–2211

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 344(1–2):87–97

    Article  CAS  Google Scholar 

  • Zhang X, Li B, Wang Y, Guo Q, Lu X, Li S, Ma P (2013) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97(21):9525–9534

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD, Guo XJ, Wang YJ, Gao TG, Zhu BC (2017) Novel screening strategy reveals a potent bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Lett Appl Microbiol 65(6):512–519

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Yu S, Yang Y, Zhang J, Zhao D, Pan Y, Fan S, Yang Z, Zhu J (2020) Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato. Front Microbiol 11:1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Ran W, Wang H, Li X, Shen Q, Shen S, Xu Y (2013) Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI. BioControl 58(2):283–292

    Google Scholar 

  • Zhao P, Quan C, Wang Y, Wang J, Fan S (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. spp. spinaciae. J Basic Microbiol 54(5):448–456

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Liu F, Yang X, Jin J, Dong X, Zeng KW, Liu D, Zhang Y, Ma M, Yang D (2018) Bacillibactin and bacillomycin analogues with cytotoxicities against human cancer cell lines from marine bacillus spp. PKU-MA00093 and PKU-MA00092. Mar Drugs 16(1):22

    Article  PubMed Central  CAS  Google Scholar 

  • Zhu J, Tan T, Shen A, Yang X, Yu Y, Gao C, Li Z, Cheng Y, Chen J, Guo L, Sun X (2020) Biocontrol potential of Bacillus subtilis IBFCBF-4 against fusarium wilt of watermelon. J Plant Pathol 102:433–441. https://doi.org/10.1007/s42161-019-00457-6

    Article  Google Scholar 

  • Zihalirwa Kulimushi P, Argüelles Arias A, Franzil L, Steels S, Ongena M (2017) Stimulation of fengycin-type antifungal lipopeptides in bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Front Microbiol 8:850. https://doi.org/10.3389/fmicb.2017.00850

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48(4):460–466

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, S., Islam, T., Mahapatra, S. (2022). Antifungal Compounds of Plant Growth-Promoting Bacillus Species. In: Sayyed, R., Singh, A., Ilyas, N. (eds) Antifungal Metabolites of Rhizobacteria for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-04805-0_7

Download citation

Publish with us

Policies and ethics