Skip to main content

Transformability in Material Flow Systems: Towards an Improved Product Development Process

  • Conference paper
  • First Online:
Managing and Implementing the Digital Transformation (ISIEA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 525))

Included in the following conference series:

Abstract

In a turbulent environment with changing conditions and requirements and the advance of Industry 4.0, transformability is an important aspect for material flow systems along their entire product life cycle. It must be considered already in early development phases and plays a key role in the operation of a system up to eventual retrofits. Therefore, transformability can help in making material flow systems reusable and thus more sustainable. Developments in the state of the art make change management a challenging task since specifications from several mechatronic domains need to be considered in a multi-disciplinary project environment. This paper analyzes established approaches that have been developed in research works, and combines these findings with the view of practitioners and thereby deduces a collection of requirements for the consistent development and operation of material flow systems. These requirements cover necessary models of the system and the participants in the development process, as well as the consideration of life cycle-related aspects for all components. After that, it is discussed which requirements are already partially met by existing approaches and which aspects need to be developed in the future to reach the objective of improved transformability in the product life cycle of material flow systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marks, P., Hoang, X.L., Weyrich, M., Fay, A.: A systematic approach for supporting the adaptation process of discrete manufacturing machines. Res. Eng. Des. 29(4), 621–641 (2018). https://doi.org/10.1007/s00163-018-0296-5

    Article  Google Scholar 

  2. Verein Deutscher Ingenieure: Design of technical products and systems – a model for product design. VDI No. 2221 Part 1 (2019)

    Google Scholar 

  3. Wünnenberg, M., Hujo, D., Schypula, R., Fottner, J., Goedicke, M., Vogel-Heuser, B.: Modellkonsistenz in der Entwicklung von Materialflusssystemen. Zeitschrift für wirtschaftlichen Fabrikbetrieb 116(11), 820–825 (2021)

    Article  Google Scholar 

  4. Vogel-Heuser, B., et al.: BPMN++ to support managing organisational, multiteam and systems engineering aspects in cyber physical production systems design and operation. Des. Sci. 8, e4 (2022)

    Google Scholar 

  5. Kernschmidt, K., Feldmann, S., Vogel-Heuser, B.: A model-based framework for increasing the interdisciplinary design of mechatronic production systems. J. Eng. Des. 29(11), 617–643 (2018)

    Article  Google Scholar 

  6. Pecht, M.G., Sandborn, P.A., Solomon, R.: Electronic part life cycle concepts and obsolescence forecasting. IEEE Trans. Comp. Packag. Technol. 23(4), 707–717 (2000)

    Article  Google Scholar 

  7. Xu, J., Fottner, J.: Retrofits von Regalbediengeräten. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 116(7–8), 501–504 (2021)

    Article  Google Scholar 

  8. Seuring, S., Gold, S.: Conducting content-analysis based literature reviews in supply chain management. Supply Chain Manag. Int. J. 17(5), 544–555 (2012)

    Article  Google Scholar 

  9. Baker, P., Canessa, M.: Warehouse design: a structured approach. Eur. J. Oper. Res. 193(2), 425–436 (2009)

    Article  Google Scholar 

  10. Verein Deutscher Ingenieure/Verband der Elektrotechnik, Elektronik, Informationstechnik: Development of Cyber-Physical Mechatronic Systems. VDI/VDE No. 2206 (2020)

    Google Scholar 

  11. Ungermann, F., Kuhnle, A., Stricker, N., Lanza, G.: Data analytics for manufacturing systems – a data-driven approach for process optimization. Procedia CIRP 81, 369–374 (2019)

    Article  Google Scholar 

  12. Vogel-Heuser, B., Konersmann, M., Aicher, T., Fischer, J., Ocker, F., Goedicke, M.: Supporting evolution of automated Material Flow Systems as part of CPPS by using coupled meta models. In: Proceedings of the 2018 IEEE International Conference on Industrial Cyber-Physical Systems, Piscataway, NJ, pp. 316–323 (2018)

    Google Scholar 

  13. Friedl, M., Weingartner, L., Hehenberger, P., Scheidl, R.: Model Dependency Maps for transparent concurrent engineering processes. In: Proceedings of the 14th Mechatronics Forum International Conference, Mechatronics 2014 (2014)

    Google Scholar 

  14. Regulin, D., Aicher, T., Vogel-Heuser, B.: Improving transferability between different engineering stages in the development of automated material flow modules. IEEE Trans. Autom. Sci. Eng. 13(4), 1422–1432 (2016)

    Article  Google Scholar 

  15. Vogel-Heuser, B., Fay, A., Schaefer, I., Tichy, M.: Evolution of software in automated production systems: challenges and research directions. J. Syst. Softw. 110, 54–84 (2015)

    Article  Google Scholar 

  16. Zio, E.: Reliability engineering: old problems and new challenges. Reliab. Eng. Syst. Saf. 94(2), 125–141 (2009)

    Article  Google Scholar 

  17. Siddiqi, A., de Weck, O.L.: Modeling methods and conceptual design principles for reconfigurable systems. J. Mech. Des. 130(10), 101102 (2008)

    Google Scholar 

  18. Verein Deutscher Ingenieure: Transformability. VDI No. 5201 (2017)

    Google Scholar 

  19. Wiendahl, H., Reichardt, J., Nyhuis, P.: Handbook Factory Planning and Design. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46391-8

  20. Lieberoth-Leden, C., Regulin, D., Günthner, W.A.: Efficient messaging through cluster coordinators in decentralized controlled material flow systems. MATEC Web Conf. 81, 6005 (2016)

    Article  Google Scholar 

  21. Verban Deutscher Maschinen- und Anlagenbau: Data Interfaces in Material Flow Controls. VDMA No. 15276 (1994)

    Google Scholar 

  22. Deutsches Institut für Normung: Enterprise-control system integration – Part 1: Models and terminology. DIN No. 62264 Part 1 (2014)

    Google Scholar 

  23. Fischer, J., Marcos, M., Vogel-Heuser, B.: Model-based development of a multi-agent system for controlling material flow systems. Automatisierungstechnik 66(5), 438–448 (2018)

    Google Scholar 

  24. Fischer, J., Lieberoth-Leden, C., Fottner, J., Vogel-Heuser, B.: Design, application, and evaluation of a multiagent system in the logistics domain. IEEE Trans. Autom. Sci. Eng. 17(3), 1283–1296 (2020)

    Google Scholar 

  25. Gehlhoff, F., Fay, A.: On agent-based decentralized and integrated scheduling for small-scale manufacturing. Automatisierungstechnik 68(1), 15–31 (2020)

    Google Scholar 

  26. Verein Deutscher Ingenieure: Methodology for the development of mechatronic systems. VDI No. 2206 (2004)

    Google Scholar 

  27. Spindler, M., Aicher, T., Schütz, D., Vogel-Heuser, B., Günthner, W.A.: Modularized control algorithm for automated material handling systems. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Wuennenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wuennenberg, M., Vollmuth, P., Xu, J., Fottner, J., Vogel-Heuser, B. (2022). Transformability in Material Flow Systems: Towards an Improved Product Development Process. In: Matt, D.T., Vidoni, R., Rauch, E., Dallasega, P. (eds) Managing and Implementing the Digital Transformation. ISIEA 2022. Lecture Notes in Networks and Systems, vol 525. Springer, Cham. https://doi.org/10.1007/978-3-031-14317-5_1

Download citation

Publish with us

Policies and ethics