Skip to main content

Algal Cell Disruption and Lipid Extraction: A Review on Current Technologies and Limitations

  • Chapter
Algal Biorefineries

Abstract

Although numerous laboratory-based analytical techniques were developed and tested over the last five or six decades, industrial-scale algal oil extraction can be considered to be at its infancy.

Cost-effective, industrial-scale algal lipid extraction has been considered only after the advent of the algal biofuel industry. Presently, there is clearly a dearth of literature or reported results from commercial algal extraction technologies. When compared to land-based oil-seed crops, several fundamental differences exist for algal lipid extraction. Starting with the need for cost-effective harvesting and dewatering of dilute algal cultures (with 0.015–0.03 % solids) to differences in cell wall chemistry, and from the unsuitability of standard oil-seed pressing techniques to the need for cell disruption before drying, create unique challenges for microalgal lipid extraction. The present chapter discusses the limitations, challenges, and findings from numerous laboratory-based cell disruption and lipid extraction experiments and analytical techniques developed specifically to characterize or quantify algal lipids for nutraceutical, aquacultural, fine-chemical, or other value-added applications. Some potential industrial-scale, lipid extraction technologies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R (2005) Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur J Lipid Sci Technol 107(6):381–386

    Article  CAS  Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishers, Oxford, pp 312–351

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Burja AM, Armenta RE, Radianingtyas H, Barrow CJ (2007) Evaluation of fatty acid extraction methods for Thraustochytrium sp. J Agric Food Chem 55(12):4795–4801

    Article  CAS  PubMed  Google Scholar 

  • Canela APRF, Rosa PTV, Marques MOM, Meireles MAA (2002) Supercritical fluid extraction of fatty acids and carotenoids from the microalgae Spirulina maxima. Ind Eng Chem Res 41(12):3012–3018

    Article  CAS  Google Scholar 

  • Chen M, Chen X, Liu T, Zhang W (2011) Subcritical ethanol extraction of lipid from wet microalgae paste of Nannochloropsis sp. J Biobased Mater Bioenerg 5(3):385–389

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38(4):291–325

    Article  CAS  Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15(5):898–902

    Article  CAS  PubMed  Google Scholar 

  • Dassey AJ, Hall SG, Theegala CS (2014) An analysis of energy consumption for algal biodiesel production: comparing the literature with current estimates. Algal Res 4:89–95

    Article  Google Scholar 

  • Denery JR, Dragull K, Tang CS, Li QX (2004) Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal Chim Acta 501(2):175–181

    Article  CAS  Google Scholar 

  • Enssani E (1990) A Method for the extraction of liquid hydrocarbons from microalgal biomass. Energy conversion engineering conference, IECEC-90, Proceedings of the 25th Intersociety, Piscataway, NJ, 6:250–255

    Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  • Griffiths MJ, Van Hille RP, Harrison STL (2010) Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45(11):1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102(1):178–185

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012a) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Harun R, Danquah MK, Webley PA (2012b) Microalgal cell disruption for biofuel development. Appl Energy 91(1):116–121

    Article  CAS  Google Scholar 

  • Hejazi MA, de Lamarlie C, Rocha JMS, Vermue M, Tramper J, Wijffels RH (2002) Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnol Bioeng 79(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Herrero M, Senorans FJ, Cifuentes A, Ibanez E (2005) Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chem 93(3):417–423

    Article  CAS  Google Scholar 

  • Herrero M, Cifuentes A, Ibanez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae. A review. Food Chem 98(1):136–148

    Article  CAS  Google Scholar 

  • Iqbal J (2012) Development of cost-effective and benign lipid extraction system for microalgae. Doctoral Dissertation, Louisiana State University

    Google Scholar 

  • Iqbal J, Theegala CS (2013a) Optimizing a continuous flow lipid extraction system (CFLES) used for extracting microalgal lipids. GCB Bioenergy 5(3):327–337

    Article  CAS  Google Scholar 

  • Iqbal J, Theegala CS (2013b) Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res 2(1):34–42

    Article  Google Scholar 

  • Iverson SJ, Lang SLC, Cooper MH (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36(11):1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Kates M (1986a) Definition and classification of lipids. Techniques of lipidology: isolation, analysis, and identification of lipids. Elsevier Science Publisher, Amsterdam

    Google Scholar 

  • Kates M (1986b) Techniques of lipidology: isolation, analysis, and identification of lipids. In: Bruden RH, van Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology, 2nd edn, Vol 3, Part 2. Elsevier, New York, pp 100–111

    Google Scholar 

  • Koberg M, Cohen M, Ben-Amotz A, Gedanken A (2011) Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour Technol 102(5):4265–4269

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Yoon BD, Oh HM (1998) Rapid method for the determination of lipid from the green algae Botryococcus braunii. Biotechnol Tech 12(7):553–556

    Article  CAS  Google Scholar 

  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1):S75–S77

    Article  CAS  PubMed  Google Scholar 

  • Leonard E, Nielsen D, Solomon K, Prather KJ (2008) Engineering microbes with synthetic biology frameworks. Trends Biotechnol 26(12):674–681

    Article  CAS  PubMed  Google Scholar 

  • Luque de Castro MD, Valcarcel M, Tena MT (1994) Analytical supercritical fluid extraction. Springer, Heidelberg

    Book  Google Scholar 

  • Mead JF, Alfin-Slater RB, Howton DR, Popjak G (1986) Lipids: chemistry, biochemistry, and nutrition. Plenum Press, New York

    Book  Google Scholar 

  • Mendes RL, Coelho JP, Fernandes HL, Marrucho IJ, Cabral JM, Novais JM, Palavra AF (1995) Applications of supercritical CO2 extraction to microalgae and plants. J Chem Technol Biotechnol 62(1):53–59

    Article  CAS  Google Scholar 

  • Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334

    Article  CAS  Google Scholar 

  • Mendes RL, Reis AD, Palavra AF (2006) Supercritical CO2 extraction of gamma-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: comparison with organic solvent extraction. Food Chem 99(1):57–63

    Google Scholar 

  • Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113(5):539–547

    Article  CAS  Google Scholar 

  • Midgett JS, Stevens BE, Dassey AJ, Spivey JJ, Theegala CS (2012) Assessing feedstocks and catalysts for production of bio-oils from hydrothermal liquefaction. Waste Biomass Valorization 3(3):259–268

    Article  CAS  Google Scholar 

  • Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102(1):118–122

    Article  CAS  PubMed  Google Scholar 

  • Pernet F, Tremblay R (2003) Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids 38(11):1191–1195

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran P, Ravindran AD (2011) A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett Appl Microbiol 53(2):150–154

    Article  CAS  PubMed  Google Scholar 

  • REG Life Sciences (2015) Technology Overview. http://www.reglifesciences.com/technology/technology-overview. Accessed 2 Feb 2015

  • Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68(6):1033–1039

    Article  CAS  Google Scholar 

  • Roder T, Sixta H (2004) Thermal treatment of cellulose pulps and its influence to cellulose reactivity. Lenzinger Berichte 83:79–83

    CAS  Google Scholar 

  • Romanik G, Gilgenast E, Przyjanzy A, Kaminski M (2007) Techniques of preparing plant material for chromatographic separation and analysis. J Biochem Biophys Methods 70(2):253–261

    Article  CAS  PubMed  Google Scholar 

  • Ryckebosch E, Muylaert K, Foubert I (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc 89(2):189–198

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Taylor LT (1996) Supercritical fluid extraction. Wiley, New York

    Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6):300–312

    Article  CAS  Google Scholar 

  • Wijkstrom U, Gumy A, Grainger R (2000) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Wikfors GH, Ohno M (2001) Impact of algal research in aquaculture. J Phycol 37(6):968–974

    Article  Google Scholar 

  • Wiltshire KH, Boersma M, Moller A, Buhtz H (2000) Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquat Ecol 34(2):119–126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra S. Theegala .

Editor information

Editors and Affiliations

List of Abbreviations

List of Abbreviations

BD20:

Solvent mixture with 20 % ethanol and 80 % biodiesel

BD40:

Solvent mixture with 40 % ethanol and 60 % biodiesel

CFLES:

Continuous flow lipid extraction system

DAG:

Diacylglycerols

FAME:

Fatty acid methyl esters

FFA:

Free fatty acids

GL:

Glycolipids

HTL:

Hydrothermal Liquefaction

MAG:

Monoacylglycerols

NL:

Neutral lipids

PL:

Phospholipids

PLE:

Pressurized lipid extraction

TAG:

Triacylglycerols

SEM:

Scanning electron microscope

SFE:

Supercritical fluid extraction

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Theegala, C.S. (2015). Algal Cell Disruption and Lipid Extraction: A Review on Current Technologies and Limitations. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_13

Download citation

Publish with us

Policies and ethics