Skip to main content

Abstract

Plant biodiversity is crucial for sustaining human life on our planet. More than 50,000 species are used globally for food, feed, fiber, medicine and horticulture. A wide range of plant-based biotechnological systems such as isolated root cultures, embryogenic cell and tissue cultures and cell suspensions are used in breeding programs, forestry and the production of pharmaceuticals. Cryopreservation is an essential tool for conservation and long-term maintenance of diverse germplasms with minimal requirements for cost and labor and a low risk of loss of preserved samples. However, large-scale use of cryogenic storage to back-up plant genetic collections is hampered by unavailability of effective methodology and genotype-specific responses of diverse specimens to cryoprotective treatments. Newly developed techniques such as droplet-vitrification are more effective and user-friendlier than classical methods of cryopreservation. Cryopreservation has been successfully employed for preserving several different types of plant materials. In this chapter we review various approaches to develop and improve cryopreservation protocols for diverse plant species. Applications of modern cryopreservation methods in biotechnology-based industry as well as breeding programs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atmakuri AR, Chaudhury R, Malik SK et al (2009) Mulberry biodiversity conservation through cryopreservation. In Vitro Cell Dev Biol Plant 45:639–649

    Article  Google Scholar 

  • Bachiri Y, Bajon C, Sauvanet A et al (2000) Effect of osmotic stress on tolerance of air-drying and cryopreservation of Arabidopsis thaliana suspension cells. Protoplasma 214:227–243

    Article  CAS  Google Scholar 

  • Bajaj YPS (1987) Cryopreservation of pollen and pollen embryos, and the establishment of pollen banks. Int Rev Cytol 107:397–420

    Article  Google Scholar 

  • Bajaj YPS (1995) Cryopreservation of germplasm of medicinal and aromatic plants. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 32, Cryopreservation of plant germplasm I. Springer, Berlin, pp 419–434

    Google Scholar 

  • Baskakova OY, Voinkova NM, Nikishina TV et al (2003) Freezing resistance and cryopreservation of cell strains of Rhaponticum cartlzamoides and Thalictrum minus. Russ J Plant Physiol 50:666–671

    Article  CAS  Google Scholar 

  • Benson EE (1990) Free radical damage in stored plant germplasm. Int Board Plant Genet Res, Rome

    Google Scholar 

  • Benson EE (2004) Cryoconserving algal and plant diversity: historical perspectives and future challenges. In: Fuller BJ, Lane N, Benson E (eds) Life in the frozen state. CRC Press, Boca Raton, pp 299–328

    Chapter  Google Scholar 

  • Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27:141–219

    Article  CAS  Google Scholar 

  • Benson EE, Bremner D (2004) Oxidative stress in the frozen plant: a free radical point of view. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, Boca Raton, pp 205–241

    Chapter  Google Scholar 

  • Benson EE, Hamill JD (1991) Cryopreservation and post freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tiss Org Cult 24:163–171

    Article  CAS  Google Scholar 

  • Bernhardt P, Edens-Meier R (2010) What we think we know vs. what we need to know about orchid pollination and conservation: Cypripedium L. as a model lineage. Bot Rev 76:204–219

    Article  Google Scholar 

  • Bouman H, De Klerk GJ (1990) Cryopreservation of lily meristems. Acta Hort 266:331–337

    Article  Google Scholar 

  • Bouman H, Tiekstra A, Petutschnig E et al (2003) Cryopreservation of Lilium species and cultivars. Acta Hort 612:147–154

    Article  Google Scholar 

  • Burchett S, Niven S, Fuller MP (2006) The effect of cold-acclimation on the water relations and freezing tolerance of Hordeum vulgare L. Cryo Lett 27:295–303

    CAS  Google Scholar 

  • Butenko RG, Popov AS, Volkova LA et al (1984) Recovery of cell cultures and their biosynthetic capacity after storage of Dioscorea deltoidea and Panax ginseng cells in liquid nitrogen. Plant Sci Lett 33:285–292

    Article  CAS  Google Scholar 

  • Carpentier SC, Witters E, Laukens K et al (2007) Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7:92–105

    Article  CAS  PubMed  Google Scholar 

  • Chen XL, Li JH, Xin X et al (2011) Cryopreservation of in vitro-grown apical meristems of Lilium by droplet-vitrification. S Afr J Bot 77:397–403

    Article  Google Scholar 

  • Chetverikova EP (1999) Role of abscisic acid in frost-tolerance of plants and cryopreservation of cultured tissues. Russ J Plant Physiol 46:823–829

    Google Scholar 

  • Crips P, Grout BWW (1984) Storage of broccoli pollen in liquid nitrogen. Euphytica 33:819–823

    Article  Google Scholar 

  • Cruz-Cruz CA, González-Arnao MT, Engelmann F (2013) Biotechnology and conservation of plant biodiversity. Resources 2:73–95

    Article  Google Scholar 

  • Cyr DR (2000) Cryopreservation: roles in clonal propagation and germplasm conservation of conifers. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm – current research progress and applications. JIRCAS/IPGRI, Tsukuba/Rome, pp 261–268

    Google Scholar 

  • Cyr D, Attree SM, El-Kassaby YA et al (2001) Application of somatic embryogenesis to tree improvement in conifers. In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Proceedings of the international wood biotechnology symposium (IWBS), Narita, Chiba, Japan, 14–17 Mar 2001. Elsevier Science B.V, pp 305–312

    Google Scholar 

  • Dixit S, Ahuja S, Narula A, Srivastava PS (2004) Cryopreservation: a potential tool for long-term conservation of medicinal plants. In: Srivastava PS, Narula A, Srivastava S (eds) Plant biotechnology and molecular markers. Anamaya Publ, New Delhi, pp 278–288

    Google Scholar 

  • Ellis D, Skogerboe D, Andre C et al (2006) Implementation of garlic cryopreservation techniques in the national plant germplasm system. Cryo Lett 27:99–106

    Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. CAB International, Oxford, UK, pp 119–161

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Engelmann F (2014) Cryopreservation of clonal crops: a review of key parameters. Acta Hort 1039:31–39

    Article  Google Scholar 

  • Engelmann F, Takagi H (eds) (2000) Cryopreservation of tropical plant germplasm: current research progress and applications. JIRCAS/IPGRI, Rome

    Google Scholar 

  • Escobar-Pérez RH (2005) Aspectos logísticos de manejo y determinación de la estabilidad genética de materiales crioconservados de yuca (Manihot esculenta Crantz). MSc. thesis. Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia-Sede Palmira, Colombia

    Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot-tips. Cryo Lett 11:413–426

    Google Scholar 

  • Fahy GM, Macfarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  CAS  PubMed  Google Scholar 

  • Fahy GM, Lilley TH, Linsdell H et al (1990) Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology 27:247–268

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Sacandé M, Pritchard H, Wetten A (2009) Influence of freezable/non-freezable water and sucrose on the viability of Theobroma cacao somatic embryos following desiccation and freezing. Plant Cell Rep 28:883–889

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014) Genebank standards for plant genetic resources for food and agriculture. Rev. ed. Rome. http://www.fao.org/docrep/019/i3704e/i3704e.pdf

  • Fedorovskii DN, Chernyak ND, Popov AS (1993) The disturbing effects of cryopreservation on the plasma membranes of ginseng cells. Sov Plant Physiol 40:94–98

    Google Scholar 

  • Fukai S (1990) Cryopreservation of chrysanthemum shoot tips. Sci Hort 45:167–174

    Article  Google Scholar 

  • Fukai S, Oe M (1990) Morphological observations of chrysanthemum shoot cultured after cryoprotection and freezing. J Jap Soc Hort Sci 59:383–387

    Article  Google Scholar 

  • Fukai S, Goi M, Tanaka M (1991) Cryopreservation of shoot tips of Chrysanthemum morifolium and related species native to Japan. Euphytica 54:201–204

    Google Scholar 

  • Fukai S, Goi M, Tanaka M (1994) The chimeric structure of the apical dome of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitam.) is affected by cryopreservation. Sci Hort 57:347–351

    Article  Google Scholar 

  • Fukui K, Shirata K, Niino T, Kashif IM (2011) Cryopreservation of mulberry winter buds in Japan. Acta Hort 908:483–488

    Article  Google Scholar 

  • Fuller BJ, Lane N, Benson EE (eds) (2004) Life in the frozen state. CRC Press, Boca Raton

    Google Scholar 

  • Ganeshan S (1986) Viability and fertilising capacity of onion pollen (Allium cepa L.) stored in liquid nitrogen. Trop Agric (Trinidad) 63:46–48

    Google Scholar 

  • Ganeshan S, Rajasekharan PE, Shashikumar S, Decruze W (2008) Cryopreservation of pollen. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 443–464

    Chapter  Google Scholar 

  • Gupta S (2014) Cryopreservation of germplasm through encapsulation-dehydration technique. Acta Hort 1039:147–153

    Article  Google Scholar 

  • Hahn EJ, Kim YS, Yu KW et al (2003) Adventitious root cultures of Panax ginseng C.A. Meyer and ginsenoside production through large-scale bioreactor system. J Plant Biotech 5:1–6

    Google Scholar 

  • Halmagyi A, Fischer-Klüver G, Mix-Wagner G, Schumacher HM (2004) Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) using different approaches. Plant Cell Rep 22:371–375

    Article  CAS  PubMed  Google Scholar 

  • Hanna WW, Towill LE (1995) Long term storage of pollen. In: Janick J (ed) Plant breeding reviews, vol 13. John Wiley & Sons, Inc, Oxford, UK, pp 179–207

    Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Lett 25:3–22

    Google Scholar 

  • Heine-Dobbernack E, Kiesecker H, Schumacher HM (2008) Cryopreservation of dedifferentiated cell cultures. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 141–165

    Chapter  Google Scholar 

  • Hirata K, Goda S, Phunchindawan M et al (1998) Cryopreservation of horseradish hairy root culture by encapsulation-dehydration. J Ferment Bioeng 86:418–420

    Article  CAS  Google Scholar 

  • Hirata K, Mukai M, Goda S et al (2002) Cryopreservation of hairy root cultures of Vinca minor (L.) by encapsulation-dehydration. Biotech Lett 24:371–376

    Article  CAS  Google Scholar 

  • Hughes HG, Lee CW, Towill LE (1991) Low-temperature preservation of Clianthus formosus pollen. Hort Sci 26:1411–1412

    Google Scholar 

  • Ito I (1965) Ultra-low temperature storage of pollinia and seeds of orchids. Jpn Orchid Soc Bull 11:4–15

    Google Scholar 

  • Joshi A, Teng WL (2000) Cryopreservation of Panax ginseng cells. Plant Cell Rep 19:971–977

    Article  CAS  Google Scholar 

  • Jung D-W, Sung CK, Touno K et al (2001) Cryopreservation of Hyoscyamus niger adventitious roots by vitrification. J Plant Physiol 158:801–805

    Article  CAS  Google Scholar 

  • Kaczmarczyk A, Rokka VM, Keller ERJ (2011) Potato shoot tip cryopreservation. A review. Potato Res 54:45–79

    Article  Google Scholar 

  • Kartha KK (ed) (1985) Cryopreservation of plant cells and organs. CRC Press, Boca Raton

    Google Scholar 

  • Kearns CA, Inouye DW (1997) Pollinators, flowering plants, and conservation biology: much remains to be learned about pollinators and plants. Bio Sci 47:297–307

    Google Scholar 

  • Kim SI, Choi HK, Son JS et al (2001) Cryopreservation of Taxus chinensis suspension cell cultures. Cryo Lett 22:43–50

    Google Scholar 

  • Kim JB, Kim HH, Cho EG et al (2004a) Evolution of sucrose and glycerol concentration in garlic shoot tips during a vitrification procedure. Cryo Lett 25:91–100

    CAS  Google Scholar 

  • Kim JB, Kim HH, Cho EG et al (2004b) Evolution of DMSO concentration in garlic shoot tips during a vitrification procedure. Cryo Lett 25:91–100

    CAS  Google Scholar 

  • Kim HH, Lee JK, Yoon JW et al (2006a) Cryopreservation of garlic bulbil primordia by the droplet-vitrification procedure. Cryo Lett 27:143–153

    CAS  Google Scholar 

  • Kim HT, Yang BH, Park YG (2006b) Cryopreservation of somatic embryos of soapberry (Sapindus mukorossi Gaertn.) by vitrification. Korean J Plant Res 19:665–669

    Google Scholar 

  • Kim HH, Lee YG, Shin DJ et al (2009) Development of alternative plant vitrification solutions in dropletvitrification procedures. Cryo Lett 30:320–324

    CAS  Google Scholar 

  • Kim HH, Popova E, Shin DJ et al (2012a) Cryobanking of Korean Allium germplasm collections: results from a 10 year experience. Cryo Lett 33:45–57

    CAS  Google Scholar 

  • Kim HH, Popova EV, Shin DJ et al (2012b) Development of a droplet-vitrification protocol for cryopreservation of Rubia akane (Nakai) hairy roots using a systematic approach. Cryo Lett 33:506–517

    CAS  Google Scholar 

  • Kim HH, Kong HJ, Shin DJ et al (2014) Development of droplet-vitrification protocol for madder hairy roots: a systematic approach using alternative cryoprotectant solution. Acta Hort 1039:107–112

    Google Scholar 

  • Knowlton HE (1922) Studies in pollen, with special reference to longevity. Mem Cornell Univ Agric Exp Stn 52:747–793

    Google Scholar 

  • Krivokharchenko AS, Chernyak ND, Nosov AM (1999) Cryopreservation of suspension cultures of plant cells by the freezing technique elaborated for mammalian embryos. Rus J Plant Physiol 46:831–834

    CAS  Google Scholar 

  • Lambert E, Goossens A, Panis B et al (2009) Cryopreservation of hairy root cultures of Maesa lanceolata and Medicago truncatula. Plant Cell Tiss Org Cult 96:289–296

    Article  Google Scholar 

  • Lee YG, Popova E, Cui HY et al (2001) Improved cryopreservation of chrysanthemum (Chrysanthemum morifolium) using droplet-vitrification. Cryo Lett 32:487–497

    Google Scholar 

  • Luza JG, Polito VS (1985) In vitro germination and storage of English walnut pollen. Sci Hort 27:303–316

    Article  Google Scholar 

  • Lyons JM, Raison JK, Steponkus PL (1979) The plant membrane in response to low temperature: an overview. In: Lyons LM, Graham D, Raison JK (eds) Low temperature stress in crop plants. The role of the membrane. Acad Press Inc, London, pp 1–24

    Google Scholar 

  • Maheshwari SC, Rashid A, Tyagi AK (1982) Haploids from pollen grains – retrospect and prospect. Am J Bot 69:865–879

    Article  Google Scholar 

  • Malik S, Cusidó RM, Mirjalili MH et al (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    Article  CAS  Google Scholar 

  • Mannonen L, Toivonen L, Kauppinen V (1990) Effects of long-term preservation on growth and productivity of Panax ginseng and Catharanthus roseus cell cultures. Plant Cell Rep 9:173–177

    Article  CAS  PubMed  Google Scholar 

  • Marks TR, Seaton PT, Pritchard HW (2014) Desiccation tolerance, longevity and seed-siring ability of entomophilous pollen from UK native orchid species. Ann Bot 114:561–569

    Article  PubMed Central  PubMed  Google Scholar 

  • Martín C, González-Benito ME (2005) Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation-dehydration. Cryobiology 51:281–289

    Article  PubMed  CAS  Google Scholar 

  • Martín C, González-Benito ME (2009) Cryopreservation and genetic stability of Dendranthema grandiflora Tzvelev in vitro cultures. Agric Food Sci 18:129–135

    Article  Google Scholar 

  • Martín C, Cervera MT, González-Benito ME (2011) Genetic stability analysis of chrysanthemum (Chrysanthemum × morifolium Ramat) after different stages of an encapsulation–dehydration cryopreservation protocol. J Plant Physiol 168:158–166

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Niino T (2014) The development of plant vitrification solution 2 and recent PVS2-based vitrification protocols. Acta Hort 1039:21–28

    Article  Google Scholar 

  • Matsumoto T, Sakai A (1995) An approach to enhance dehydration tolerance of alginate-coated dried meristems cooled to −196°C. Cryo Lett 16:299–306

    Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of lily by vitrification. Plant Cell Tiss Org Cult 41:237–241

    Article  CAS  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Phys (Cell Physiol 16) 247:125–142

    Google Scholar 

  • Meeyot W, Kamemoto H (1969) Studies on storage of orchid pollen. Am Orchid Soc Bull 38:388–393

    Google Scholar 

  • Meryman YT (1974) Freezing injury and its prevention in living cells. Annu Rev Biophys Bioeng 3:341–363

    Article  CAS  PubMed  Google Scholar 

  • Miao NH, Kaneko Y, Sugawara Y (2005) Ultrastructural implications of pretreatment for successful cryopreservation of Oncidium protocorm-like body. Cryo Lett 26:333–340

    Google Scholar 

  • MicuÅ‚a A, Tykarska T, KuraÅ› M (2005) Ultrastructure of Gentiana tibetica proembryogenic cells before and after cooling treatments. Cryo Lett 26:367–378

    Google Scholar 

  • Mikula A (2006) Comparison of three techniques for cryopreservation and reestablishment of long-term Centiana tibetica suspension culture. Cryo Lett 27:269–282

    CAS  Google Scholar 

  • Niimi Y, Shiokawa Y (1992) A study on the storage of Lilium pollen. J Japan Soc Hort Sci 61:399–403

    Article  CAS  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Nosov AM (1999) Plant cell culture: unique system, model, and tool. Russ J Plant Physiol 46:731–738

    CAS  Google Scholar 

  • Nosov AM (2012) Application of cell technologies for production of plant-derived bioactive substances of plant origin. Appl Biochem Microbiol 48:609–624

    Article  CAS  Google Scholar 

  • Nosov AM, Popova EV, Kochkin DV (2014) Isoprenoid production via plant cell cultures: biosynthesis, accumulation and scaling-up to bioreactors. In: Paek KY, Murthy HN, Zhong JJ (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer Science + Business Media, Dordrecht

    Google Scholar 

  • Oh SY, Wu CH, Popova E et al (2009) Cryopreservation of Panax ginseng adventitious roots. J Plant Biol 52:348–354

    Article  CAS  Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Org Cult 81:287–300

    Article  Google Scholar 

  • Paek KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Eng Biotechnol 113:151–176

    CAS  PubMed  Google Scholar 

  • Panis B, Lambardi M (2006) Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. Food and Agriculture Organization of the United Nations, Rome, pp 61–78

    Google Scholar 

  • Panis B, Thinh NT (2001) Cryopreservation of Musa germplasm. In: Escalant JV, Sharrock S (eds) INIBAP technical guideline 5. International Network for the Improvement of Banana and Plantain, Montpellier

    Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet-vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Park SU, Kong H, Shin DJ et al (2014) Development of vitrification protocol in Rubia akane (Nakai) hairy roots using a systematic approach. Cryo Lett 35:138–144

    CAS  Google Scholar 

  • Parton E, Vervaeke I, Delen R et al (2002) Viability and storage of bromeliad pollen. Euphytica 125:155–161

    Article  CAS  Google Scholar 

  • Pence VC (1995) Cryopreservation of recalcitrant seeds. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 32, Cryopreservation of plant germplasm I. Springer Verlag, Berlin, pp 29–52

    Google Scholar 

  • Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47:176–187

    Article  Google Scholar 

  • Popova EV, Lee EJ, Wu CH et al (2009) A simple method for cryopreservation of Ginkgo biloba callus. Plant Cell Tiss Org Cult 97:337–343

    Article  CAS  Google Scholar 

  • Popova E, Kim HH, Paek KY (2010) Cryopreservation of coriander (Coriandrum sativum L.) somatic embryos using sucrose preculture and air desiccation. Sci Hort 124:522–528

    Article  CAS  Google Scholar 

  • Popova EV, Paek KY, Kim HH (2011) Cryopreservation of medicinal plants: the case of in vitro cultures. In: Kumar A, Roy S (eds) Plant tissue culture and applied plant biotechnology. Pointer publishers, Jaipur, pp 153–196

    Google Scholar 

  • Pritchard HW (2007) Cryopreservation of desiccation-tolerant seeds. In: Day JG, Stacey GN (eds) Methods in molecular biology, vol 368, 2nd edn, Cryopreservation and freeze-drying protocols. Humana Press Inc, Totowa, pp 185–201

    Google Scholar 

  • Pritchard HW, Nadarajan J (2008) Cryopreservation of orthodox (desiccation tolerant) seeds. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 485–501

    Chapter  Google Scholar 

  • Pritchard HW, Prendergast FG (1989) Factors influencing the germination and storage characteristics of orchid pollen. In: Pritchard HW (ed) Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, Cambridge, pp 1–16

    Chapter  Google Scholar 

  • Rajasekharan PE, Ganeshan S (1994) Freeze preservation of rose pollen in liquid nitrogen: feasibility, viability and fertility status after long-term storage. J Hort Sci 69:565–569

    Google Scholar 

  • Rajasekharan PET, Rao M, Janakiram T, Ganeshan S (1994) Freeze preservation of Gladiolus pollen. Euphytica 80:105–109

    Article  Google Scholar 

  • Rajasekharan PE, Ganeshan S, Thamizharasu V (1995) Expression of trifoliate leaf character in Citrus limonia × Poncirus trifoliata hybrids through cryostored pollen. J Hort Sci 70:485–490

    Google Scholar 

  • Ramon M, Geuns JMC, Swennen R, Panis B (2002) Polyamines and fatty acids in sucrose precultured banana meristems and correlation with survival rate after cryopreservation. Cryo Lett 23:345–352

    CAS  Google Scholar 

  • Reed BM (2001) Implementing cryogenic storage of clonally propagated plants. Cryo Lett 22:97–104

    CAS  Google Scholar 

  • Reed BM (ed) (2008) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Reinhoud PJ, Van Iren FV, Kijne JW (2000) Cryopreservation of undifferentiated plant cells. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and applications. JIRCAS/IPGRI, Rome, pp 91–102

    Google Scholar 

  • Ren L, Zhang D, Jiang XN et al (2013) Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation. Plant Sci 212:37–47

    Article  CAS  PubMed  Google Scholar 

  • Ren L, Zhang D, Shen XH, Reed BM (2014) Antioxidants and anti-stress compounds improve the survival of cryopreserved Arabidopsis seedlings. Acta Hort 1039:57–60

    Article  Google Scholar 

  • Sacks EJ, St Clair DA (1997) Cryogenic storage of tomato pollen: effect on fecundity. Hort Sci 31:447–448

    Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryo Lett 28:151–172

    CAS  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  • Sakai A, Matsumoto T, Hirai D, Niino T (2000) Newly developed encapsulation-dehydration protocol for plant cryopreservation. Cryo Lett 21:53–62

    Google Scholar 

  • Salma M, Engelmann-Sylvestre I, Collin M et al (2014) Effect of the successive steps of a cryopreservation protocol on the structural integrity of Rubia akane Nakai hairy roots. Protoplasma 251:649–659

    Article  CAS  PubMed  Google Scholar 

  • Samar F, Mujib A, Nasim SA, Siddiqui ZH (2009) Cryopreservation of embryogenic cell suspension of Catharanthus roseus L. (G) Don. Plant Cell Tiss Org Cult 98:1–9

    Article  CAS  Google Scholar 

  • Seaton P (1994) Orchid seed and pollen storage. Am Orchid Soc Bull 63:918–922

    Google Scholar 

  • Seitz U, Reinhard E (1987) Growth and ginsenoside patterns of cryopreserved Panax ginseng cell cultures. J Plant Physiol 131:215–223

    Article  CAS  Google Scholar 

  • Sekizawa K, Yamamoto S, Rafique T et al (2011) Cryopreservation of in vitro–grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using aluminium cryo-plates. Plant Biotech 28:401–405

    Article  Google Scholar 

  • Shijun C (1984) The study of keeping freshness of orchid pollinia. Acta Hort Sin 11:279–280

    Google Scholar 

  • Shin DJ, Kong HJ, Popova EV et al (2012) Cryopreservation of Kalopanax septemlobus embryogenic callus using vitrification and droplet-vitrification. Cryo Lett 33:402–410

    CAS  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. In: Stahl U, Donalies UB, Nevoigt E (eds) Food biotechnology, vol 111, Advances in biochemical engineering/biotechnology. Springer, Berlin/Heidelberg/, pp 187–228

    Chapter  Google Scholar 

  • Smirnova AV, Matveyeva NP, Polesskaya OG, Yermakov IP (2009) Generation of reactive oxygen species during pollen grain germination. Russ J Dev Biol 40:345–353

    Article  CAS  Google Scholar 

  • Smirnova AV, Timofeyev KN, Breygina MA et al (2012) Antioxidant properties of the pollen exine polymer matrix. Biophysics 57:174–178

    Article  CAS  Google Scholar 

  • Speranza A, Crinelli R, Scoccianti V, Geitmann A (2012) Reactive oxygen species are involved in pollen tube initiation in kiwifruit. Plant Biol 14:64–76

    CAS  PubMed  Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry and management. Springer, Berlin

    Book  Google Scholar 

  • Stanwood PC, Bass LN (1981) Seed germplasm preservation using liquid nitrogen. Seed Sci Tech 9:423–437

    Google Scholar 

  • Steponkus PL (ed) (1992) Advances in low temperature biology, vol 1. JAI Press Ltd, London, pp 1–61

    Google Scholar 

  • Suzuki M, Tandon P, Ishikawa M, Toyomasu T (2008) Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotech Rep 2:123–131

    Article  Google Scholar 

  • Teixeira da Silva JAT (2003) Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology genetics and transgenic biotechnology. Biotech Adv 21:715–766

    Article  CAS  Google Scholar 

  • Teixeira da Silva JAT (2004) Ornamental chrysanthemums: improvement by biotechnology. Plant Cell Tiss Org Cult 79:1–18

    Article  Google Scholar 

  • Teoh KH, Weathers PJ, Cheetham RD, Walcerz DB (1996) Cryopreservation of transformed (hairy) roots of Artemisia annua. Cryobiology 33:106–117

    Article  CAS  PubMed  Google Scholar 

  • Titova MV, Shumilo NA, Chernyak ND et al (2007) Use of cryoconservation to maintaining strain stability upon outfit culturing of Polyscias filicifolia Bailey cell suspension I. Growth characteristics of restored culture. Biotekhnologiya 5:60–65 (in Russian)

    Google Scholar 

  • Titova MV, Berkovich EA, Reshetnyak OV et al (2011) Respiration activity of suspension cell culture of Polyscias filicifolia Bailey, Stephania glabra (Roxb.) miers, and Dioscorea deltoidea wall. Appl Biochem Microbiol 47:87–92

    Article  CAS  Google Scholar 

  • Touchell DH, Dixon KW (1994) Cryopreservation for seedbanking of Australian species. Ann Bot 40:541–546

    Article  Google Scholar 

  • Touno K, Yoshimatsu K, Shimomura K (2006) Characteristics of Atropa belladonna hairy roots cryopreserved by vitrification method. Cryo Lett 27:65–72

    CAS  Google Scholar 

  • Towill LE (1985) Low temperature and freeze-vacuum-drying preservation of pollen. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 171–198

    Google Scholar 

  • Towill LE, Bajaj YPS (2002) Cryopreservation of plant germplasm II. Biotechnology in agriculture and forestry, vol 50. Springer, Berlin

    Book  Google Scholar 

  • Towill LE, Bonnart R (2003) Cracking in a vitrification solution during cooling or warming does not affect growth of cryopreserved mint shoot tips. Cryo Lett 24:341–346

    Google Scholar 

  • Towill LE, Forsline PL, Walters C et al (2004) Cryopreservation of Malus germplasm using a winter vegetative bud method: results from 1915 accessions. Cryo Lett 25:323–334

    Google Scholar 

  • Turner SR, Senaratna T, Bunn E et al (2001) Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Ann Bot 87:371–378

    Article  CAS  Google Scholar 

  • Uchendu EE, Leonard SW, Traber MG, Reed BM (2010a) Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35

    Article  CAS  PubMed  Google Scholar 

  • Uchendu EE, Muminova M, Gupta S, Reed BM (2010b) Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cell Dev Biol Plant 46:386–393

    Article  CAS  Google Scholar 

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2013) Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.). J Pineal Res 55:435–442

    CAS  PubMed  Google Scholar 

  • Uemura M, Steponkus PL (1999) Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane. J Plant Res 112:245–254

    Article  Google Scholar 

  • Vendrame WA, Carvalho VS, Dias JMM, Maguire I (2008) Pollination of Dendrobium hybrids using cryopreserved pollen. Hort Sci 43:264–267

    Google Scholar 

  • Verpoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgen Res 9:323–343

    Article  CAS  Google Scholar 

  • Visser T (1955) Germination and storage of pollen. Meded Landbouwhogesch Wageningen 55:1–68

    Google Scholar 

  • Volk GM, Walters C (2006) Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 52:48–61

    Article  CAS  PubMed  Google Scholar 

  • Volk GM, Henk AD, Bonnart RM et al (2014a) Plant shoot tip response to treatment with plant vitrification solution #2. Acta Hort 1039:81–84

    Article  Google Scholar 

  • Volk GM, Shepherd A, Borrart RM (2014b) Strategies for improved efficiency when implementing plant vitrification techniques. Acta Hort 1039:85–89

    Article  Google Scholar 

  • Wang QC, Panis B, Engelmann F et al (2009) Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Ann Appl Biol 154:351–363

    Article  Google Scholar 

  • Wang QC, Wang RR, Li BQ, Cui ZH (2012) Cryopreservation: a strategy technique for safe preservation of genetically transformed plant materials. Adv Genet Eng Biotechnol 1:1–2

    Article  Google Scholar 

  • Wang B, Wang RR, Cui ZH et al (2014a) Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotech Adv 32:583–595

    Article  CAS  Google Scholar 

  • Wang RR, Gao XX, Chen L et al (2014b) Shoot recovery and genetic integrity of Chrysanthemum morifolium shoot tips following cryopreservation by droplet-vitrification. Sci Hort 176:330–339

    Article  CAS  Google Scholar 

  • Weatherhead MA, Grout BWW, Henshaw GG (1978) Advantages of storage of potato pollen in liquid nitrogen. Potato Res 21:331–334

    Article  Google Scholar 

  • Wink M, Alfermann AW, Franke R et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Res 3:90–100

    Article  CAS  Google Scholar 

  • Withers LA (1985) Cryopreservation of cultured plant cells and protoplasts. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 243–267

    Google Scholar 

  • Withers LA (1987) The low temperature preservation of plant cell, tissue and organ cultures and seed for genetic conservation and improved agriculture. In: Grout BWW, Morris GJ (eds) The effects of low temperatures on biological systems. Edward Arnold, London, pp 389–409

    Google Scholar 

  • Xu B, Han H, Zheng C, Sun M (1997) Cryopreservation of pollen by vitrification in Brassica. Wuhan Univ J Nat Sci 2:120–123

    Article  Google Scholar 

  • Xu J, Liu Q, Jia M et al (2014) Generation of reactive oxygen species during cryopreservation may improve Lilium × siberia pollen viability. In Vitro Cell Dev Biol Plant 50:369–375

    Article  CAS  Google Scholar 

  • Xue SH, Luo XJ, Wu ZH et al (2008) Cold storage and cryopreservation of hairy root cultures of medicinal plant Eruca sativa Mill. Astragalus membranaceus and Gentiana macrophylla Pall. Plant Cell Tiss Org Cult 92:251–260

    Article  Google Scholar 

  • Yates IE, Sparks D, Connor K, Towill L (1991) Reducing pollen moisture simplifies long-term storage of pecan pollen. J Amer Soc Hort Sci 116:430–434

    Google Scholar 

  • Yin ZF, Bi WL, Chen L et al (2014) An efficient, widely applicable cryopreservation of Lilium shoot tips by droplet vitrification. Acta Phys Plant 36:1683–1692

    Article  CAS  Google Scholar 

  • Yoshimatsu K, Yamaguchi H, Shimomura K (1996) Traits of Panax ginseng hairy roots after cold storage and cryopreservation. Plant Cell Rep 15:555–560

    Article  CAS  PubMed  Google Scholar 

  • Zalewska M, Kulus D (2013) Cryopreservation of in vitro-grown shoot tips of chrysanthemum by encapsulation-dehydration. Folia Hort 25:133–140

    Google Scholar 

  • Zhang LX, Chang WC, Wei YJ et al (1993) Cryopreservation of ginseng pollen. Hort Sci 28:742–743

    Google Scholar 

  • Zhao Y, Qi LW, Wang WM et al (2011) Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J Pineal Res 50:83–88

    Article  CAS  PubMed  Google Scholar 

  • Zhu GY, Geuns JMC, Dussert S et al (2006) Change in sugar, sterol and fatty acid composition in banana meristems caused by sucrose-induced acclimation and its effects on cryopreservation. Physiol Plant 128:80–94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Popova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popova, E., Shukla, M., Kim, H.H., Saxena, P.K. (2015). Plant Cryopreservation for Biotechnology and Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_3

Download citation

Publish with us

Policies and ethics