Skip to main content

Approximate Recurrence Quantification Analysis (aRQA) in Code of Best Practice

  • Conference paper
  • First Online:
Recurrence Plots and Their Quantifications: Expanding Horizons

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 180))

Abstract

Recurrence quantification analysis (RQA) is a well-known tool for studying nonlinear behavior of dynamical systems, e.g. for finding transitions in climate data or classifying reading abilities. But the construction of a recurrence plot and the subsequent quantification of its small and large scale structures is computational demanding, especially for long time series or data streams with high sample rate. One way to reduce the time and space complexity of RQA are approximations, which are sufficient for many data analysis tasks, although they do not guarantee exact solutions. In earlier work, we proposed how to approximate diagonal line based RQA measures and showed how these approximations perform in finding transitions for difference equations. The present work aims at extending these approximations to vertical line based RQA measures and investigating the runtime/accuracy of our approximate RQA measures on real-life climate data. Our empirical evaluation shows that the proposed approximate RQA measures achieve tremendous speedups without losing much of the accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Marwan, A historical review of recurrence plots. Eur. Phys. J. Spec. Topics 164(1), 3–12 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. C.L. Webber Jr., N. Marwan, A. Facchini, A. Giuliani, Simpler methods do it better: success of recurrence quantification analysis as a general purpose data analysis tool. Phys. Lett. A 373, 3753–3756 (2009)

    Article  ADS  MATH  Google Scholar 

  3. S. Spiegel, J.B. Jain, S. Albayrak, A Recurrence Plot-Based Distance Measure, vol. 103 (Springer, Cham, 2014), pp. 1–15

    Google Scholar 

  4. S. Spiegel, D. Schultz, S. Albayrak, BestTime: Finding representatives in time series datasets. Lecture Notes in Computer Science: Artificial Intelligence, vol. 8726, pp. 477–480 (2014)

    Google Scholar 

  5. F. Hasselman, Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal. PeerJ 3, e837 (2015)

    Article  Google Scholar 

  6. M.A.F. Harrison, M.G. Frei, I. Osorio, Detection of seizure rhythmicity by recurrences. Chaos 18(3), 033124 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 66(2), 026702 (2002)

    Article  ADS  MATH  Google Scholar 

  8. A. Giuliani, M. Tomasi, Recurrence quantification analysis reveals interaction partners in paramyxoviridae envelope glycoproteins. Proteins: Struct. Func. Genetics 46(2), 171–176 (2002)

    Google Scholar 

  9. S. Spiegel, Discovery of Driving Behavior Patterns (Springer, Cham, 2015), pp. 315–343

    Google Scholar 

  10. N. Marwan, S. Schinkel, J. Kurths, Recurrence plots 25 years later: gaining confidence in dynamical transitions. Europhys. Lett. 101, 20007 (2013)

    Article  ADS  Google Scholar 

  11. J.F. Donges, R.V. Donner, M.H. Trauth, N. Marwan, H.J. Schellnhuber, J. Kurths, Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc. Natl. Acad. Sci. 108(51), 20422–20427 (2011)

    Article  ADS  Google Scholar 

  12. G. Litak, A.K. Sen, A. Syta, Intermittent and chaotic vibrations in a regenerative cutting process. Chaos Solitons Fractals 41(4), 2115–2122 (2009)

    Article  ADS  Google Scholar 

  13. M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, J. Hudson, Detection of synchronization for non-phase-coherent and non-stationary data. Europhys. Lett. 71(3), 466–472 (2005)

    Article  ADS  Google Scholar 

  14. Y. Hirata, K. Aihara, Identifying hidden common causes from bivariate time series: a method using recurrence plots. Phys. Rev. E 81(1), 016203 (2010)

    Article  ADS  Google Scholar 

  15. J.H. Feldhoff, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Geometric signature of complex synchronisation scenarios. Europhys. Lett. 102(3), 30007 (2013)

    Article  ADS  Google Scholar 

  16. T. Rawald, M. Sips, N. Marwan, D. Dransch, Fast Computation of Recurrences in Long Time Series, vol. 103 (Springer, Cham, 2014), pp. 17–29

    Google Scholar 

  17. D. Schultz, S. Spiegel, N. Marwan, S. Albayrak, Approximation of diagonal line based measures in recurrence quantification analysis. Phys. Lett. A 379(14–15), 997–1011 (2015)

    Article  MathSciNet  Google Scholar 

  18. J.-P. Eckmann, S. Oliffson, Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 4(9), 973–977 (1987)

    Google Scholar 

  19. N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980)

    Article  ADS  Google Scholar 

  20. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.P. Zbilut, C.L. Webber Jr., Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3–4), 199–203 (1992)

    Article  ADS  Google Scholar 

  22. C.L. Webber Jr., J.P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)

    Google Scholar 

  23. M. Thiel, M.C. Romano, P.L. Read, J. Kurths, Estimation of dynamical invariants without embedding by recurrence plots. Chaos 14(2), 234–243 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. N. Marwan, J.F. Donges, Y. Zou, R.V. Donner, J. Kurths, Complex network approach for recurrence analysis of time series. Phys. Lett. A 373(46), 4246–4254 (2009)

    Article  ADS  MATH  Google Scholar 

  25. T. Rawald, pyRQA (2015)

    Google Scholar 

  26. M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, G. Sugihara, Early-warning signals for critical transitions. Nature 461(7260), 53–59 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Spiegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Spiegel, S., Schultz, D., Marwan, N. (2016). Approximate Recurrence Quantification Analysis (aRQA) in Code of Best Practice. In: Webber, Jr., C., Ioana, C., Marwan, N. (eds) Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-319-29922-8_6

Download citation

Publish with us

Policies and ethics