Skip to main content

The Role of Proteomics in Personalized Medicine

  • Chapter
  • First Online:
Personalized Medicine

Part of the book series: Europeanization and Globalization ((EAG,volume 2))

Abstract

The consequences of the differences in the genome of each human individual are the variation in expressed protein isoforms, as well as the changes of the level and timing of protein expression and of the spatial distribution of expressed proteins. These differences are defined as differences in human proteome. The consequence of the changes of individual proteome is the difference in protein–protein interactions (interactome). The network of interactions between proteins underlines every single process in a living organism and makes it happen. This complex network is kept in more or less optimal homeostasis that is unique for each organism. Thus, the capacity of the interactome to overcome disease condition differs among individuals, e.g., to compensate over or down regulations of different processes that are induced, e.g., by mutations. Recent technological advances in high throughput proteomic techniques enabled fast and deep analysis of human proteome and also some understanding of the complex mechanism of protein–protein interactions. However, the human proteome analysis is still not complete, and further improvements in both analytical techniques and accompanying bioinformatics tools are necessary. In this chapter, current state of application of different proteomic approaches for personalized patient proteome profiling and search for diagnostic and prognostic disease biomarkers are presented and the contribution of proteome analysis to personalized approach in most frequent diseases in developed Western World, namely cancer, cardiovascular, urological and neurodegenerative diseases, diabetes mellitus and allergies, has been reviewed.

Professor Djuro Josić, Ph.D., Head of Division for Medicinal Chemistry, Department of Biotechnology, University of Rijeka, Rijeka, Croatia.

Uroš Andjelković, Ph.D., Division for Medicinal Chemistry, Department of Biotechnology, University of Rijeka, Rijeka, Croatia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pesce et al. (2013), pp. 24–28.

  2. 2.

    Pavelic et al. (2015).

  3. 3.

    Hodgin and Cohen (2010), pp. 455–457.

  4. 4.

    Perl (2007), pp. 22–26; Papeta et al. (2009), pp. 1178–1188.

  5. 5.

    Petricoin et al. (2002a), pp. 572–577.

  6. 6.

    Josic (2014), p. e111.

  7. 7.

    Mann et al. (2013), pp. 582–590.

  8. 8.

    Cao et al. (2013), pp. 8112–8120.

  9. 9.

    Lane et al. (2014), pp. 15–20.

  10. 10.

    Farrah et al. (2013), pp. 162–171.

  11. 11.

    Goldknopf (2008), pp. 1–8.

  12. 12.

    Boschetti et al. (2012), pp. 22–41.

  13. 13.

    Poste (2011), pp. 156–157.

  14. 14.

    Muraoka et al. (2013), pp. 208–213.

  15. 15.

    Mitchell (2010), pp. 665–670.

  16. 16.

    Lawson et al. (2006), pp. 2747–2758; Breen et al. (2012), pp. S89–S100; Cao et al. (2013), pp. 8112–8120.

  17. 17.

    Koomen et al. (2008), pp. 1780–1794.

  18. 18.

    Chan et al. (2012), p. A16530; Pieborn et al. (2014), pp. 2846–2855.

  19. 19.

    Chen et al. (2012), pp. 1293–1307.

  20. 20.

    Chan et al. (2012), p. A16530.

  21. 21.

    Pieborn et al. (2014), pp. 2846–2855.

  22. 22.

    Silvestri et al. (2013), pp. 309–316.

  23. 23.

    Grubb et al. (2009), pp. 3044–3054.

  24. 24.

    Gerlinger et al. (2012), pp. 883–892.

  25. 25.

    Pieborn et al. (2014), pp. 2846–2855.

  26. 26.

    Al-Lazikani et al. (2012), pp. 679–691.

  27. 27.

    Al-Lazikani et al. (2012), pp. 679–691.

  28. 28.

    Grubb et al. (2009), pp. 3044–3054.

  29. 29.

    Gerlinger et al. (2012), pp. 883–892; Drake et al. (2013), pp. E4762–E4769.

  30. 30.

    Mueller et al. (2014), pp. 818–828.

  31. 31.

    Campbell et al. (2010), pp. 1109–1113.

  32. 32.

    Erben et al. (2008), pp. 1544–1550.

  33. 33.

    Alberts et al. (2007), pp. 784–788.

  34. 34.

    Chao et al. (2010), pp. 547–552.

  35. 35.

    Wolfkuhle et al. (2012), pp. 6426–6435.

  36. 36.

    Masuda and Yamada (2014), pp. 651–657.

  37. 37.

    Asplund et al. (2012), pp. 2067–2077; Ponten et al. (2011), pp. 428–446.

  38. 38.

    Ponten et al. (2011), pp. 428–446; Lundberg and Uhlen (2010), pp. 3984–3996.

  39. 39.

    MacAleese et al. (2009), pp. 819–834; Taverna et al. (2014).

  40. 40.

    Josic and Kovac (2009), pp. 207–213.

  41. 41.

    Kang et al. (2010), pp. 1157–1164.

  42. 42.

    Maier et al. (2013), pp. 2901–2910.

  43. 43.

    Le Founder et al. (2011), pp. 3755–3765.

  44. 44.

    Kang et al. (2010), pp. 1157–1164.

  45. 45.

    Taverna et al. (2014).

  46. 46.

    Harris et al. (2013), pp. 2717–2723.

  47. 47.

    Maier et al. (2013), pp. 2901–2910.

  48. 48.

    Kim et al. (2014a), pp. 2803–2811; Forsström et al. (2014), pp. 1585–1597.

  49. 49.

    Pesch et al. (2014), pp. 874–883; Meng and Veenstra (2011), pp. 2650–2659.

  50. 50.

    Forler et al. (2014), pp. 56–61.

  51. 51.

    Vidal et al. (2011), pp. 986–998.

  52. 52.

    Goh et al. (2007), pp. 8685–8690.

  53. 53.

    Huang et al. (2013), pp. 313–324.

  54. 54.

    De Las Rivas and Fonatanillo (2012), pp. 487–496.

  55. 55.

    Forler et al. (2014), pp. 56–61.

  56. 56.

    Licastro and Caruso (2010).

  57. 57.

    De Las Rivas and Fonatanillo (2012), pp. 487–496.

  58. 58.

    Silvestri et al. (2013), pp. 309–316.

  59. 59.

    Boschetti et al. (2012), pp. 22–41; Poste (2011), pp. 156–157; Breen et al. (2012), pp. S89–S100.

  60. 60.

    Josic et al. (2008), pp. 116–112.

  61. 61.

    Stehle et al. (2014), pp. 909–916.

  62. 62.

    Hanahan and Weinberg (2011), pp. 646–674.

  63. 63.

    Al-Lazikani et al. (2012), pp. 679–691.

  64. 64.

    Erben et al. (2008), pp. 1544–1550.

  65. 65.

    Varadchachary and Raber (2014), pp. 757–765.

  66. 66.

    Mauvoisin et al. (2014).

  67. 67.

    Shah and Mann (2011), pp. 704–712.

  68. 68.

    Goldknopf (2008), pp. 1–8.

  69. 69.

    Chen et al. (2012), pp. 1293–1307.

  70. 70.

    Silvestri et al. (2013), pp. 309–316.

  71. 71.

    Christiansen et al. (2014), pp. 525–546.

  72. 72.

    Pivac et al. (2011).

  73. 73.

    Pucic et al. (2011).

  74. 74.

    Huhn et al. (2009), pp. 882–913.

  75. 75.

    Del Castillo Busto et al. (2009), pp. 1009–1113.

  76. 76.

    Breen et al. (2012), pp. S89–S100.

  77. 77.

    Chan et al. (2012), p. A16530.

  78. 78.

    Chan et al. (2012), p. A16530.

  79. 79.

    Forler et al. (2014), pp. 56–61.

  80. 80.

    Wang et al. (2014), pp. 155–160.

  81. 81.

    Koomen et al. (2008), pp. 1780–1794.

  82. 82.

    Ponten et al. (2011), pp. 428–446; Forler et al. (2014), pp. 56–61; Vidal et al. (2011), pp. 986–998.

  83. 83.

    Forler et al. (2014), pp. 56–61.

  84. 84.

    Pesce et al. (2013), pp. 24–28.

  85. 85.

    Chen et al. (2012), pp. 1293–1307.

  86. 86.

    Pieborn et al. (2014), pp. 2846–2855.

  87. 87.

    Boschetti et al. (2012), pp. 22–41; Poste (2011), pp. 156–157.

  88. 88.

    See Grubb et al. (2009), pp. 3044–3054, as well as Masuda and Yamada (2014), pp. 651–657.

  89. 89.

    Chen et al. (2012), pp. 1293–1307.

  90. 90.

    Koomen et al. (2008), pp. 1780–1794.

  91. 91.

    Masuda and Yamada (2014), pp. 651–657; Imami et al. (2012), pp. 1741–1757.

  92. 92.

    Petricoin et al. (2002b), pp. 1576–1578.

  93. 93.

    Kim et al. (2014b), pp. 811–822; Forler et al. (2014), pp. 56–61; Vidal et al. (2011), pp. 986–998.

  94. 94.

    Drake et al. (2013), pp. E4762–E4769.

  95. 95.

    Fredolini et al. (2011), pp. 125–136.

  96. 96.

    McLerran et al. (2008), pp. 53–60; Adam et al. (2002), pp. 3609–3614.

  97. 97.

    McLerran et al. (2008), pp. 53–60; Hoffman (2011), pp. 2013–2019.

  98. 98.

    Anderson and Anderson (2002), pp. 845–867.

  99. 99.

    Breen et al. (2012), pp. S89–S100.

  100. 100.

    Mann et al. (2013), pp. 582–590.

  101. 101.

    Goh et al. (2007), pp. 8685–8690.

  102. 102.

    Brinton et al. (2012), pp. 345–356.

  103. 103.

    Varadchachary and Raber (2014), pp. 757–765.

  104. 104.

    Sharma et al. (2009), pp. 2650–2655.

  105. 105.

    Dai (2014), p. A15454.

  106. 106.

    Silvestri et al. (2013), pp. 309–316.

  107. 107.

    Agnetti et al. (2010), pp. 78–87.

  108. 108.

    Donoghue et al. (2008), pp. 3895–3905.

  109. 109.

    Barallobre-Barreiro et al. (2012), pp. 789–802.

  110. 110.

    Vélez and García (2014).

  111. 111.

    Chang et al. (2010), pp. 1067–1078.

  112. 112.

    Birner-Gruenberger et al. (2014), pp. 36–46.

  113. 113.

    Smith and White (2014), pp. 506–521.

  114. 114.

    Vidal et al. (2011), pp. 986–998; Fredolini et al. (2011), pp. 125–136.

  115. 115.

    Edwards et al. (2008), pp. 1824–1837; Cuesta et al. (2015).

  116. 116.

    Huillet et al. (2012), pp. 1–12.

  117. 117.

    Voros (2014), pp. 239–242.

  118. 118.

    Schiffer (2011), pp. 81–94.

  119. 119.

    Mueller et al. (2014), pp. 818–828; Lee et al. (2014).

  120. 120.

    Lincoln (2007), p. 148.

  121. 121.

    Debelle et al. (2008), pp. 158–169; Moon et al. (2011), pp. 2459–2475.

  122. 122.

    Rucevic et al. (2012), pp. 79–90; Lincoln (2007), p. 148.

  123. 123.

    Yun et al. (2014), pp. 2055–2061; Rucevic et al. (2012), pp. 79–90.

  124. 124.

    Reljic et al. (2014), pp. 2348–2362; Grollman et al. (2007), pp. 12129–12134.

  125. 125.

    Gharavi et al. (2011), pp. 321–327.

  126. 126.

    Krasteva and Georgieva (2006), pp. 561–567.

  127. 127.

    Jelakovic et al. (2014), pp. 2020–2027.

  128. 128.

    Reljic et al. (2014), pp. 2348–2362.

  129. 129.

    Jelakovic et al. (2014), pp. 2020–2027.

  130. 130.

    Reljic et al. (2014), pp. 2348–2362.

  131. 131.

    Gharavi et al. (2011), pp. 321–327.

  132. 132.

    Sui et al. (2014), pp. 793–798.

  133. 133.

    Grollman et al. (2007), pp. 12129–12134.

  134. 134.

    Gusella et al. (1983), pp. 234–238.

  135. 135.

    van Ham et al. (2009), pp. 360–370.

  136. 136.

    Chen et al. (2002), pp. 11884–11889.

  137. 137.

    Rosenblatt et al. (2001), pp. 399–403.

  138. 138.

    Goldknopf (2008), pp. 1–8.

  139. 139.

    Zhang et al. (2008), pp. 923–932.

  140. 140.

    Glauber et al. (2014), p. e0002.

  141. 141.

    Harold et al. (2009), pp. 1088–1093.

  142. 142.

    Goldknopf (2008), pp. 1–8.

  143. 143.

    Citron et al. (1997), pp. 67–72.

  144. 144.

    Rodolfo et al. (2010), pp. 519–542.

  145. 145.

    Harold et al. (2009), pp. 1088–1093.

  146. 146.

    Castegna et al. (2002a), pp. 562–571; Castegna et al. (2002b), pp. 1524–1532.

  147. 147.

    Blennov and Hampel (2003), pp. 605–613.

  148. 148.

    Thambisetty et al. (2011).

  149. 149.

    Simón-Sánchez et al. (2009), pp. 1308–1312.

  150. 150.

    Henchcliffe and Beal (2008), pp. 600–609.

  151. 151.

    Polymeropoulos et al. (1997), pp. 2045–2047.

  152. 152.

    Spienlli et al. (2014), pp. 2037–2050.

  153. 153.

    Jones et al. (2014), pp. 33–51.

  154. 154.

    Pienaar et al. (2010), pp. 205–226.

  155. 155.

    Xiong et al. (2014), pp. 1808–1819; Licker et al. (2014), pp. 784–794.

  156. 156.

    Eller and Williams (2009), pp. 561–570.

  157. 157.

    Jesse et al. (2012), pp. 99–505.

  158. 158.

    Zhang et al. (2008), pp. 923–932.

  159. 159.

    The Huntington’s Disease Collaborative Group (1993), pp. 971–983.

  160. 160.

    Boroveck et al. (2005), pp. 11023–11028.

  161. 161.

    Dalrymple et al. (2007), pp. 2833–2840.

  162. 162.

    McQuade et al. (2014), pp. 5648–5659.

  163. 163.

    Sparre et al. (2005), pp. 441–457.

  164. 164.

    Kim et al. (2014b), pp. 811–822.

  165. 165.

    Sundstena and Ortsäter (2009), pp. 93–103.

  166. 166.

    Sarker et al. (2014), pp. 2–7.

  167. 167.

    Glauber et al. (2014), p. e0002.

  168. 168.

    Zhi et al. (2011), pp. 1–10; Kaur et al. (2012), pp. 5527–5539.

  169. 169.

    Cabras et al. (2010), pp. 2099–2108.

  170. 170.

    Caseiro et al. (2013), pp. 188–199.

  171. 171.

    Chiang et al. (2012), pp. 2950–2959.

  172. 172.

    Mao and Wang (2014), pp. 1560–1569.

  173. 173.

    Shao et al. (2015).

  174. 174.

    Chen et al. (2012), pp. 1293–1307.

  175. 175.

    Chuang et al. (2010), pp. 3854–3867.

  176. 176.

    Halim et al. (2014).

  177. 177.

    Hood et al. (2012), pp. 2773–2783.

  178. 178.

    Cirkovic-Velickovic and Gavrovic-Jankulovic (2014).

  179. 179.

    Sauer and Luge (2014).

  180. 180.

    Bluggel et al. (2011), pp. 1558–1570.

  181. 181.

    Gygi et al. (2000), pp. 9390–9395.

  182. 182.

    Plomp et al. (2014), pp. 536–546.

  183. 183.

    Pucic-Bankovic et al. (2013), pp. 821–831.

  184. 184.

    Ciardiello et al. (2013), pp. 1033–1041.

  185. 185.

    Schmidt and Goodwin (2013), pp. 1134–1156.

  186. 186.

    Pastushkova et al. (2013), p. e71652.

  187. 187.

    Nicholson (2006), pp. 2067–2068.

  188. 188.

    Nicholson (2006), pp. 2067–2068.

  189. 189.

    Chen et al. (2012), pp. 1293–1307.

  190. 190.

    Caseiro et al. (2013), pp. 188–199; Rahbar et al. (2011), pp. 45–57.

References

  • Adam BL, Qu Y, Davis YW, Ward MD, Clements MA et al (2002) Serum protein fingerprinting coupled with a pattern-matching distinguishes prostate cancer from benign prostate hyperplasia in healthy men. Cancer Res 62:3609–3614

    Google Scholar 

  • Agnetti G, Kaludercic N, Kane LA, Elliott ST, Guo Y et al (2010) Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. Circulation 3:78–87

    Google Scholar 

  • Alberts DS, Liu PY, Wilczynski SP, Jang A, Moon J, Ward JH et al (2007) Phase II trial of imatinib mesylate in recurrent, biomarker positive ovarian cancer (Southwest Oncology Group Protocol S0211). Int J Gynecol Cancer 17:784–788

    Article  Google Scholar 

  • Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30:679–691

    Article  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome. Mol Cell Proteomics 1:845–867

    Article  Google Scholar 

  • Asplund A, Edquist P-H, Schwenk JM, Ponten F (2012) Antibodies for profiling of human proteome – The Human Protein Atlas as a resource for cancer research. Proteomics 12:2067–2077

    Article  Google Scholar 

  • Barallobre-Barreiro J, Didangelos A, Schoendube FA, Drozdov I, Yin X et al (2012) Proteomics analysis of cardiac extracellular matrix remodeling in a porcine model of ischemia/reperfusion injury. Circulation 125:789–802

    Article  Google Scholar 

  • Birner-Gruenberger R, Schittmayer M, Holzer M, Marsche G (2014) Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology. Prog Lipid Res 56:36–46

    Article  Google Scholar 

  • Blennov K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  Google Scholar 

  • Bluggel M, Spertini F, Lutter P, Wassenberg J, Audran R et al (2011) Toward protein biomarkers for allergy: CD4þ T cell proteomics in allergic and nonallergic subjects sampled in and out of pollen season. J Proteome Res 10:1558–1570

    Article  Google Scholar 

  • Boroveck F, Lovrecic L, Zhou J, Jeong H, Then F et al (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci U S A 102:11023–11028

    Article  Google Scholar 

  • Boschetti E, Chung MC, Righetti PG (2012) “The quest for biomarkers”: are we on the right technical track? Proteomics Clin Appl 6:22–41

    Article  Google Scholar 

  • Breen L, Cao L, Eom K, SrajerGajdosik M, Camara L, Giacometti J et al (2012) High-throughput fractionation of human plasma for fast enrichment of low- and high-abundance proteins. Blood Transfus 10:S89–S100

    Google Scholar 

  • Brinton LT, Brentnall TA, Smith JA, Kelly KA (2012) Metastatic biomarker discovery through proteomics. Cancer Genomics Proteomics 9:345–356

    Google Scholar 

  • Cabras T, Pisano E, Mastinu A, Denotti G, Pusceddu PP, Inzitari R, Fanali C, Nemolato S, Castagnola M, Messana I (2010) Alterations of the salivary secretory peptidome profile in children affected by type 1 diabetes. Mol Cell Proteomics 9:2099–2108

    Article  Google Scholar 

  • Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al (2010) The patterns and dynamic and genomic instability in metastatic pancreatic cancer. Nature 467:1109–1113

    Article  Google Scholar 

  • Cao L, Clifton JG, Reutter W, Josic D (2013) Mass spectrometry-based analysis of rat liver and hepatocellular carcinoma Morris Hepatoma 7777 plasma membrane proteome. Anal Chem 85:8112–8120

    Article  Google Scholar 

  • Caseiro A, Barros A, Ferreira R, Padr A, Aroso M, Quintaneiro C, Pereira E, Marinheiro R, Vitorino R, Amado F (2013) Pursuing type 1 diabetes mellitus and related complications through urinary proteomics. Transl Res 163:188–199

    Article  Google Scholar 

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB et al (2002a) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571

    Article  Google Scholar 

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB et al (2002b) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurol 82:1524–1532

    Google Scholar 

  • Chan M, Lin M, Cyr D, Lucas J, Thompson W (2012) Plasma proteomics reveal greater upregulation of thrombomodulin in patients treated with Rivaroxaban compared with Warfarin. Circulation 126, A16530

    Article  Google Scholar 

  • Chang L, Villacorta L, Li R, Hamblin M, Xu W (2010) Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126:1067–1078

    Article  Google Scholar 

  • Chao J, Budd GT, Chu P, Frankel P, Garcia D, Janquera M et al (2010) Phase II clinical trial of imatinib mesylate in therapy of KIT and/or PDGFRalpha-expressing Ewing sarcoma family of tumors and desmoplastic small round cell tumors. Anticancer Res 30:547–552

    Google Scholar 

  • Chen S, Ferrone FA, Wetzel R (2002) Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci U S A 99:11884–11889

    Article  Google Scholar 

  • Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HYK et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307

    Article  Google Scholar 

  • Chiang SY, Tsai ML, Wang CY, Chen A, Chou YC, Hsia CW, Wu YF, Chen HM, Huang TH, Chen PH, Liu HT, Shui HA (2012) Proteomic analysis and identification of aqueous humor proteins with a pathophysiological role in diabetic retinopathy. J Proteomics 75:2950–2959

    Article  Google Scholar 

  • Christiansen MN, Chink J, Lee L, Anugraham M, Abrahams JL, Packer NH (2014) Cell surface protein glycosylation in cancer. Proteomics 14:525–546

    Article  Google Scholar 

  • Chuang JG, Su SN, Chiang BL, Lee HJ, Chow LP (2010) Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics 10:3854–3867

    Article  Google Scholar 

  • Ciardiello MA, Tamburrini M, Liso M, Crescenzo R, Rafaiani C, Mari A (2013) Food allergen profiling: a big challenge. Food Res Int 54:1033–1041

    Article  Google Scholar 

  • Cirkovic-Velickovic T, Gavrovic-Jankulovic M (2014) Food allergens in biochemistry and molecular nutrition. Springer, New York. ISBN 978-1-4939-0841-7

    Book  Google Scholar 

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T et al (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med 3:67–72

    Article  Google Scholar 

  • Cuesta F, Mourino-Alvarez L, Baldan-Martin M, Moreno-Luna R, Barderas MG (2015) Contribution of proteomics to the management of vascular disorders. Transl Proteomics. doi:10.1016/j.trprot.2014.10.002

    Google Scholar 

  • Dai DF (2014) Inhibition of mechanistic target of Rapamycin by heterozygous deletion of raptor ameliorates pressure-overload induced heart failure and the associated proteomics remodeling. Circulation 130, A15454

    Google Scholar 

  • Dalrymple A, Wild EJ, Joubert R, Sathasivam K, Björqvist M et al (2007) Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 6:2833–2840

    Article  Google Scholar 

  • De Las Rivas J, Fonatanillo C (2012) Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell. Brief Funct Genomics 11:487–496

    Google Scholar 

  • Debelle FD, Vanherweghem J-L, Nortier JL (2008) Aristolochic acid nephropathy: a worldwide problem. Kidney Int 74:158–169

    Article  Google Scholar 

  • Del Castillo Busto ME, Meija J, Montes-Bayon M, Sanz-Medel A (2009) Diophantine analysis complements electrospray-Q-TOF data for structure elucidation of transferrin glycoforms used for clinical diagnosis in human serum and cerebrospinal fluid. Proteomics 9:1009–1113

    Google Scholar 

  • Donoghue PM, Hughes C, Vissers JPC, Langridge JI, Dunn MJ (2008) Nonionic detergent phase extraction for the proteomic analysis of heart membrane proteins using label-free LC-MS. Proteomics 8:3895–3905

    Article  Google Scholar 

  • Drake JM, Graham NA, Lee JK, Stoyanova T, Faltermeier CM, Sud S et al (2013) Metastatic castration-resistant prostate cancer reveals intrapatient similarity and intrapatient heterogeneity of therapeutic kinase targets. Proc Natl Acad Sci U S A 110:E4762–E4769

    Article  Google Scholar 

  • Edwards AVG, White MY, Cordwell SJ (2008) The role of proteomics in clinical cardiovascular biomarker discovery. Mol Cell Proteomics 7:1824–1837

    Article  Google Scholar 

  • Eller M, Williams DR (2009) Biological fluid biomarkers in neurodegenerative Parkinsonism. Nat Rev Neurol 5:561–570

    Article  Google Scholar 

  • Erben P, Horisberger K, Muessle B, Müller MC, Treschl A, Ernst T (2008) mRNA expression of platelet-derived growth factor receptor-beta and C-KIT: correlation with pathologic response to cetuximab-based chemoradiotherapy in patient with rectal cancer. Int J Radiat Oncol Biol Phys 72:1544–1550

    Article  Google Scholar 

  • Farrah T, Deutsch EW, Hoopmann MR, Hallows JL, Sun Z, Huang CY, Moritz RL (2013) The state of the human proteome in 2012 as viewed through Peptide Atlas. J Proteome Res 12:162–171

    Article  Google Scholar 

  • Forler S, Klein D, Klose J (2014) Individualized proteomics. J Proteomics 107:56–61

    Article  Google Scholar 

  • Forsström B, Bisławska Axnäs B, Stengele K-P, Bühler J, Albert TJ et al (2014) Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 13:1585–1597

    Article  Google Scholar 

  • Fredolini C, Liotte L, Petricoin EF (2011) Application of proteomic technologies for prostate cancer detection, prognosis and tailored therapy. Crit Rev Clin Lab Sci 47:125–136

    Article  Google Scholar 

  • Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  Google Scholar 

  • Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P et al (2011) Genome wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327

    Article  Google Scholar 

  • Glauber HS, Rishe N, Karnieli E (2014) Introduction to personalized medicine in diabetes mellitus. Rambam Maimonides Med J 5(1), e0002. doi:10.5041/RMMJ.10136

    Article  Google Scholar 

  • Goh HI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–8690

    Article  Google Scholar 

  • Goldknopf IL (2008) Blood-based proteomics for personalized medicine: examples from neurodegenerative disease. Exp Rev Proteomics 5:1–8

    Article  Google Scholar 

  • Grollman A, Shibutani S, Moriya M, Miller F, Wu L et al (2007) Aristolochic acid in the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci U S A 104:12129–12134

    Article  Google Scholar 

  • Grubb RL, Deng J, Pinto PA, Mohler JL, Chinnaiyan A, Rubin M et al (2009) Pathway biomarker profiling of localized and metastatic human prostate cancer reveal metastatic and prognostic signatures. J Proteome Res 8:3044–3054

    Article  Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238

    Article  Google Scholar 

  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci 97:9390–9395

    Article  Google Scholar 

  • Halim A, Carlsson MC, Madsen CB, Brand S, Møller SR et al (2014) Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications. Mol Cell Proteomics. doi:10.1074/mcp.M114.042614

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  Google Scholar 

  • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    Article  Google Scholar 

  • Harris GA, Nicklay JJ, Caprioli RM (2013) Localized in situ hydrogel-mediated protein digestion and extraction technique for on-tissue analysis. Anal Chem 85:2717–2723

    Article  Google Scholar 

  • Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract 4:600–609

    Article  Google Scholar 

  • Hodgin JB, Cohen CD (2010) Experimental approaches to the human renal transcriptome. Semin Nephrol 30:455–457

    Article  Google Scholar 

  • Hoffman RM (2011) Screening for prostate cancer. N Engl J Med 365:2013–2019

    Article  Google Scholar 

  • Hood LE, Omenn GS, Moritz RL, Aebersold R, Yamamoto KR et al (2012) New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences. Proteomics 12:2773–2783

    Article  Google Scholar 

  • Huang L-C, Wu X, Chen JY (2013) Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures. Proteomics 13:313–324

    Article  Google Scholar 

  • Huhn C, Selman MHJ, Ruhaak R, Deelder AM, Wuhrer M (2009) IgG glycosylation analysis. Proteomics 9:882–913

    Article  Google Scholar 

  • Huillet C, Adrait A, Lebert D, Picard G, Trauchessec M et al (2012) Accurate quantification of cardiovascular biomarkers in serum using protein standard absolute quantification (PSAQ™) and selected reaction monitoring. Mol Cell Proteomics 11:1–12

    Article  Google Scholar 

  • Imami K, Suguiami N, Imamura H, Wakabayashi M, Tomita M et al (2012) Temporal profiling of Lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11:1741–1757. doi:10.1074/mcp.M112.019919

    Article  Google Scholar 

  • Jelakovic B, Nikolic J, Radovanovic Z, Nortier J, Cosyns J-P, Grollmann AP et al (2014) Consensus statement on screening, diagnosis, classification and treatment of endemic (Balkan) nephropathy. Nephrol Dial Transplant 29:2020–2027

    Article  Google Scholar 

  • Jesse S, Rist W, Steinacker P, Soinen H, Herukka S-K et al (2012) iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson’s disease dementia. Exp Neurol 234:99–505

    Google Scholar 

  • Jones DR, Moussaud S, McLean P (2014) Targeting Heat shock proteins to modulate alpha-synuclein toxicity. Ther Adv Neurol Disord 7:33–51

    Article  Google Scholar 

  • Josic D (2014) Strategies for complete proteomic analysis of hydrophobic proteins in complex biological samples-hide-and seek. J Data Mining Genomics Proteomics 5:e111. doi:10.4172/2153-0602.1000e111

  • Josic D, Kovac S (2009) Molecular imaging mass spectrometry. Kem Ind 58:207–213

    Google Scholar 

  • Josic D, Clifton JG, Kovac S (2008) Membrane proteins as diagnostic biomarkers and targets for new therapies. Curr Opin Mol Ther 10:116–123

    Google Scholar 

  • Kang S, Shim HS, Lee JS, Kim DS, Kim HY et al (2010) Molecular proteomic imaging of tumor interfaces by mass spectrometry. J Proteome Res 9:1157–1164

    Article  Google Scholar 

  • Kaur P, Rizk NM, Ibrahim S, Younes N, Uppal A, Dennis K, Karve T, Blakeslee K, Kwagyan J, Zirie M, Ressom HW, Cheema AK (2012) iTRAQ-based quantitative protein expression profiling and MRM verification of markers in type 2 diabetes. J Proteome Res 11:5527–5539

    Article  Google Scholar 

  • Kim MS, Zhong Y, Yachida S, Rajeshkumar NV, Abel M et al (2014a) Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics. Mol Cell Proteomics 13:2803–2811

    Article  Google Scholar 

  • Kim SJ, Chae S, Kim H, Mun DG, Back S, Choi HY, Park KS, Hwang D, Choi SH, Lee SW (2014b) A protein profile of visceral adipose tissues linked to early pathogenesis of type 2 diabetes mellitus. Mol Cell Proteomics 13:811–822

    Article  Google Scholar 

  • Koomen J, Haura EB, Bepler G, Suthphen R, Remly-Wood ER, Benson K et al (2008) Proteomic contributions to personalized cancer care. Mol Cell Proteomics 7:1780–1794

    Article  Google Scholar 

  • Krasteva ME, Georgieva EL (2006) Germline p53 single base changes associated with Balkan endemic nephropathy. Biochem Biophys Res Commun 342:561–567

    Article  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  Google Scholar 

  • Lane L, Bairoch A, Beavis RC, Deutsch EW, Gaudet P, Lundberg E, Omenn GS (2014) Metrics for the Human Proteome Project 2013 − 2014 and strategies for finding missing proteins. J Proteome Res 13:15–20

    Article  Google Scholar 

  • Lawson EL, Clifton JG, Huang F, Li X, Hixson DC, Josic D (2006) Use of magnetic beads with immobilized monoclonal antibodies or isolation of highly pure plasma membranes. Electrophoresis 27:2747–2758

    Google Scholar 

  • Le Founder J, Laouirem S, Chapelle M, Albuquerque M, Belghiti J et al (2011) Imaging mass spectrometry provides fingerprints for distinguishing hepatocellular carcinoma from cirrhosis. J Proteome Res 10:3755–3765

    Article  Google Scholar 

  • Lee Y-C, Gajdosik MS, Josic D, Clifton JG, Logothetis C (2014) Secretome analysis of an osteogenic tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment. Mol Cell Proteomics M114:039909

    Google Scholar 

  • Licastro F, Caruso C (2010) Predictive diagnosis and personalized medicine for the prevention of chronic degenerative diseases. Immun Ageing 7(Suppl 1):S1. doi:10.1186/1742-4933-7-S1-S1

    Article  Google Scholar 

  • Licker V, Turck N, Kövari E, Burkhardt K, Côte M et al (2014) Proteomic analyses of human substantia nigra identifies novel candidates involved in Parkinson’s disease pathogenesis. Proteomics 14:784–794

    Article  Google Scholar 

  • Lincoln T (2007) Danger in the diet. Nature 448:148. doi:10.1038/448148a

    Article  Google Scholar 

  • Lundberg E, Uhlen M (2010) Creation of an antibody-based subcellular protein atlas. Proteomics 10:3984–3996

    Article  Google Scholar 

  • MacAleese L, Stauber J, Heeren RMA (2009) Perspectives for imaging mass spectrometry in the proteomics landscape. Proteomics 9:819–834

    Article  Google Scholar 

  • Maier SK, Hahne H, Gholami AM, Balluff B, Meding S et al (2013) Comprehensive identification of proteins from MALDI imaging. Mol Cell Proteomics 12:2901–2910

    Article  Google Scholar 

  • Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate and ubiquitous proteomes. Mol Cell 49:582–590

    Article  Google Scholar 

  • Mao P, Wang D (2014) Top-down proteomics of a drop of blood for diabetes monitoring. J Proteome Res 13:1560–1569

    Article  Google Scholar 

  • Masuda M, Yamada T (2014) Signaling pathway profiling by reversed-phase array for personalized cancer medicine. Biochim Biophys Acta 1854:651–657

    Article  Google Scholar 

  • Mauvoisin D, Dayton L, Gachom F, Kussmann M (2014) Proteomics and circadian rhytmus: it’s all about signaling! Proteomics. doi:10.1002/pmic.201400187

    Google Scholar 

  • McLerran D, Grizzle WE, Feng Z, Bigbee WI, Banez LL et al (2008) Analytical validation of serum profiling for diagnosis of prostate cancer: sources of sample bias. Clin Chem 54:53–60

    Article  Google Scholar 

  • McQuade LR, Balachandran A, Scott HA, Khaira S, Baker MS, Schmidt U (2014) Proteomics of Huntington’s disease affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances. J Proteome Res 13:5648–5659

    Article  Google Scholar 

  • Meng Z, Veenstra TD (2011) Targeted mass spectrometry approach for protein biomarker verification. J Proteomics 74:2650–2659

    Article  Google Scholar 

  • Mitchell P (2010) Proteomics retrenches. Nat Biotechnol 28:665–670

    Article  Google Scholar 

  • Moon P-G, Lee J-E, You S, Kim T-K, Cho J-H et al (2011) Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 11:2459–2475

    Article  Google Scholar 

  • Mueller C, Decarvalho AC, Mikkelsen T, Lehman NL, Calvert V, Espina V (2014) Glioblastoma cell enrichment is critical for analysis of phosphorylated drug targets and proteomic-genomic correlations. Cancer Res 74:818–828

    Article  Google Scholar 

  • Muraoka S, Kume H, Adachi J, Shiromizu T, Masuda T, Ishihama Y, Tomonaga T (2013) In-depth membrane proteomic study of breast cancer tissue for the generation of a chromosome-based protein list. J Proteome Res 12:208–213

    Article  Google Scholar 

  • Nicholson JK (2006) Omics dreams of personalized health care. J Proteome Res 5:2067–2068

    Article  Google Scholar 

  • Papeta N, Chan KT, Prakash S, Martino J, Kiryluk K, Bellard D et al (2009) Susceptibility loci for murine HIV-associated nephropathy encode trans-regulations of podocyte gene expression. J Clin Invest 119:1178–1188

    Article  Google Scholar 

  • Pastushkova L, Kireev KS, Kononikhin AS, Tiys ES, Popov IA, Starodubtseva NL, Dobrokhotov IV, Ivanisenko VA, Larina IM, Kolchanov NA, Nikolaev EN (2013) Detection of renal tissue and urinary tract proteins in the human urine after space flight. PLoS One 8(8), e71652. doi:10.1371/journal.pone.0071652

    Article  Google Scholar 

  • Pavelic K, Martinovic T, Kraljevic Pavelic S (2015) Do we understand personalized medicine paradigm? EMBO Rep 16:133–136. doi:10.15252/embr.201439609

    Google Scholar 

  • Perl DP (2007) The role of pathologist in translational and personalized medicine. Mt Sinai J Med 74:22–26

    Article  Google Scholar 

  • Pesce F, Pathan S, Schena FP (2013) From “omics” to personalized medicine. Nephrol Dial Transplant 28:24–28

    Article  Google Scholar 

  • Pesch B, Brüning T, Johnen G, Casjens S, Bonberg N et al (2014) Biomarker research with prospective study design for the early detection of cancer. Biochim Biophys Acta 1844:874–883

    Article  Google Scholar 

  • Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB et al (2002a) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577

    Article  Google Scholar 

  • Petricoin EF, Ornstein DK, Paweletz CP, Ardekani A, Hackett PS et al (2002b) Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 94:1576–1578

    Article  Google Scholar 

  • Pieborn M, Silvestri A, Spira A, Reeder A, Pin E, Banks S et al (2014) Pilot phase I/II personalized therapy trial for metastatic colorectal cancer: evaluating the feasibility of protein pathway activation mapping for stratifying patients to therapy with Imatinib and Panitumumab. J Proteome Res 13:2846–2855

    Article  Google Scholar 

  • Pienaar IS, Dexter D, Burkhard P (2010) Mitochondrial proteomics as a selective tool for unravelling Parkinson’s disease pathogenesis. Expert Rev Proteomics 7:205–226

    Article  Google Scholar 

  • Pivac N, Knezevic A, Gornik O, Pucic M, Igl W et al (2011) Human plasma glycome in attention deficit hyperactivity disorder and autism spectrum disorders. Mol Cell Proteomics 10(1):M110.004200. doi:10.101074/mcp.M110.004200

    Google Scholar 

  • Plomp R, Hensbergen PJ, Rombouts Y, Zauner G, Dragan I et al (2014) Site-specific N-glycosylation analysis of human immunoglobulin E. J Proteome Res 13:536–546

    Article  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  Google Scholar 

  • Ponten F, Schwenk JM, Asplund A, Edquist PH (2011) The Human protein Atlas as a proteomic resource for biomarker discovery. J Intern Med 270:428–446

    Article  Google Scholar 

  • Poste G (2011) Bring on the biomarkers. Nature 469:156–157

    Article  Google Scholar 

  • Pucic M, Knezevic A, Vidic J, Adamczyk B, Novokmet M et al (2011) High throughput isolation and glycosylaton analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 10(10):M111.010090. doi:10.1074/mcp.M111.010090

    Google Scholar 

  • Pucic-Bankovic M, Selman MHJ, Hoffmann M, Rudan I, Campbell H, Deelder AM, Lauc G, Wuhrer M (2013) High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J Proteome Res 12:821–831

    Article  Google Scholar 

  • Rahbar A, Rivers R, Boja E, Kinsinger C, Mesri M et al (2011) Realizing individualized medicine: the road to transferring proteomics from the laboratory to the clinic. Pers Med 8:45–57

    Article  Google Scholar 

  • Reljic Z, Zlatovic M, Savic-Radojevic A, Pekmezovic T, Djukanovic LJ et al (2014) Is increased susceptibility to Balkan Endemic nephropathy in carriers of common GSTA1 (A*/B*) polymorphism linked with a catalytic role of GSTA1 in ocratoxin A biotransformation? Serbian case control study and in silico analysis. Toxins (Basel) 6:2348–2362

    Article  Google Scholar 

  • Rodolfo C, Ciccosanti F, Giacomo GD, Piacentini M, Fimia GM (2010) Proteomic analysis of mitochondrial dysfunction in neurodegenerative diseases. Expert Rev Proteomics 7:519–542

    Article  Google Scholar 

  • Rosenblatt A, Brinkmann RR, Liang KY, Almquist EW, Marglois RL et al (2001) Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet 105:399–403

    Article  Google Scholar 

  • Rucevic M, Rosenquist T, Breen L, Cao L, Clifton J et al (2012) Proteome alternations in response to aristolohic acids in experimental animal model. J Proteome Res 76:79–90

    Article  Google Scholar 

  • Sarker MMH, Zhou MC, Rameshwar P, Hanover JA (2014) Function and roles of proteins: diabetes as a paradigm. Prog Biophys Mol Biol 114:2–7

    Article  Google Scholar 

  • Sauer S, Luge T (2014) Nutriproteomics – facts, concepts and perspectives. Proteomics. doi:10.1002/pmic.201400383

    Google Scholar 

  • Schiffer E (2011) Urinary proteomics: ready for prime time in urological cancer diagnosis. Future Med 8:81–94

    Google Scholar 

  • Schmidt MA, Goodwin TJ (2013) Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance. Metabolomics 9:1134–1156

    Google Scholar 

  • Shah AM, Mann DL (2011) In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378:704–712

    Article  Google Scholar 

  • Shao S, Guo T, Aebersold R (2015) Mass spectrometry-based proteomic quest for diabetes biomarkers. Biochim Biophys Acta. doi:10.1016/j.bbapap.2014.12.012

    Google Scholar 

  • Sharma V, Singh BP, Gaur SN, Pasha S, Arora N (2009) Bioinformatics and immunologic investigation on B and T cell epitopes of Cur l 3, a major allergen of Curvularia lunata. J Proteom Res 8:2650–2655

    Article  Google Scholar 

  • Silvestri A, Calvert V, Belluco C, Lipsky M, De Maria R, Deng J et al (2013) Protein pathway activation mapping of colorectal metastatic progression reveals metastasis-specific network alternations. Clin Exp Metastasis 30:309–316

    Article  Google Scholar 

  • Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–1312

    Article  Google Scholar 

  • Smith LE, White MY (2014) The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin Appl 8:506–521

    Article  Google Scholar 

  • Sparre T, Larsen MR, Heding PE, Karlsen AE, Jensen ON, Pociot F (2005) Unraveling the pathogenesis of type 1 diabetes with proteomics. Mol Cell Proteomics 4:441–457

    Article  Google Scholar 

  • Spienlli KJ, Taylor JK, Osterberg VR, Churchill MJ, Pollock E et al (2014) Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease. J Neurosci 34:2037–2050

    Article  Google Scholar 

  • Stehle F, Schulz K, Seliger B (2014) Towards defining biomarkers indicating resistances to targeted therapies. Biochim Biophys Acta 1844:909–916

    Article  Google Scholar 

  • Sui W, Cui Z, Zhang R, Xue W, Ou M et al (2014) Comparative proteomic analysis of renal tissue in IgA nephropathy with iTRAQ quantitative proteomics. Biomed Rep 2:793–798

    Google Scholar 

  • Sundstena T, Ortsäter H (2009) Proteomics in diabetes research. Mol Cell Endocrinol 297:93–103

    Article  Google Scholar 

  • Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB (2014) Imaging mass spectrometry for assessing cutaneous wound healing: analysis of pressure ulcers. J Proteome Res. doi:10.1021/pr5010218(12/8/2014)

    Google Scholar 

  • Thambisetty M, Simmons A, Hye A, Campbell J, Westman E et al (2011) Plasma biomarkers of brain atrophy in Alzheimer’s disease. PLoS One. doi:10.1371/journal.pone.0028527

    Google Scholar 

  • The Huntington’s Disease Collaborative Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • van Ham TJ, Breitling R, Swetz MA, Nollen EAA (2009) Neurodegenerative diseases: lessons from genome-wide screens in small model organisms. EMBO Mol Med 1:360–370

    Article  Google Scholar 

  • Varadchachary GR, Raber MN (2014) Cancer of unknown primary side. N Engl J Med 371:757–765

    Article  Google Scholar 

  • Vélez P, García A (2014) Platelet proteomics in cardiovascular diseases. Transl Proteomics. doi:10.1016/j.trprot.2014.09.002

    Google Scholar 

  • Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998

    Article  Google Scholar 

  • Voros S (2014) Leveraging next-generation phenotyping and pan-omics to identify novel biomarkers and pharmaceutical targets for cardiovascular disease. Pers Med 11:239–242

    Article  Google Scholar 

  • Wang Y, Watres J, Leung ML, Unruh A, Roh W et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–160

    Article  Google Scholar 

  • Wolfkuhle JD, Berg D, Langer R, Tran K, Illi J, Espina V et al (2012) Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping. Clin Cancer Res 18:6426–6435

    Article  Google Scholar 

  • Xiong Y, Zhang Y, Iqbal J, Ke M, Wang Y et al (2014) Differential expression of synaptic proteins in unilateral 6-OHDA lesioned rat model – a comparative proteomics approach. Proteomics 14:1808–1819

    Article  Google Scholar 

  • Yun BH, Rosenquist T, Nikolic J, Dragicevic D, Jelakovic B, Tomic K, Dickman KG et al (2014) Formalin-fixed paraffin-embedded tissue as a source for quantitation of carcinogen DNA adducts: aristolochic acid as a prototype carcinogen. Carcinogenesis 35:2055–2061

    Article  Google Scholar 

  • Zhang Y, Keene CD, Pa C, Montine KS, Montine TJ (2008) Proteomics of human neurodegenerative diseases. J Neuropathol Exp Neurol 67:923–932

    Article  Google Scholar 

  • Zhi W, Sharma A, Purohit S, Miller E, Bode B, Anderson SW, Reed JC, Steed RD, Steed L, Hopkins D, She JX (2011) Discovery and validation of serum protein changes in type 1 diabetes patients using high throughput two dimensional liquid chromatography-mass spectrometry and immunoassays. Mol Cell Proteomics 10:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djuro Josić Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Josić, D., Andjelković, U. (2016). The Role of Proteomics in Personalized Medicine. In: Bodiroga-Vukobrat, N., Rukavina, D., Pavelić, K., Sander, G. (eds) Personalized Medicine. Europeanization and Globalization, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-39349-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39349-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39347-6

  • Online ISBN: 978-3-319-39349-0

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics