Skip to main content

Omega-3 Polyunsaturated Fatty Acids and Hyperlipidaemias

  • Chapter
  • First Online:
Omega-3 Fatty Acids

Abstract

Hyperlipidaemia is a multifaceted risk factor for cardiovascular disease, involving multiple aetiologies such as diet, lifestyle, and/or metabolic effects within the body. Dietary long-chain omega-3 polyunsaturated fatty acids (n-3PUFA) have been shown to regulate key pathways involved in lipid metabolism. By this action, n-3PUFA favourably modulate blood lipids such as triglycerides (TG), low-density lipoproteins (LDL), and high-density lipoproteins (HDL). The hypolipidaemic effects of dietary supplementation with n-3PUFA may be enhanced by combination drug or natural therapies and have the potential to reduce dependence on lipid-lowering drug therapy. The widespread modulatory effects on blood lipid profile are not only dose dependent, but also dependent on genetic make-up and gender differences. Further investigation into the modulatory effects of dietary n-3PUFA on blood lipids is warranted in order to optimize the efficacy of n-3PUFA therapy for the prevention and management of hyperlipidaemias. Future studies should investigate the influence of gender and genotypic variants on the effects of dietary n-3PUFA in order to optimize dietary strategies and recommendations to prevent and manage hyperlipidaemias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ALA:

α-linolenic acid

apoB:

Apolipoprotein B

apoC-III:

Apolipoprotein C-III

apoE:

Apolipoprotein E

CETP:

Cholesterol ester transfer protein

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

EPA:

Eicosapentaenoic acid

FFA:

Free fatty acids

FXR:

Farnesol X receptor

HDL:

High-density lipoprotein

HNF-4α:

Hepatocyte nuclear factor-4α

HSL:

Hormone-sensitive lipase

LA:

Linoleic acid

IDL:

Intermediate-density lipoproteins

LDL:

Low-density lipoprotein

LpL:

Lipoprotein lipase

LXRα:

Liver X receptor-alpha

NEFA:

Non-esterified free fatty acids

n-3PUFA:

Omega-3 polyunsaturated fatty acids

n-6PUFA:

Omega-6 polyunsaturated fatty acids

PPAR:

Peroxisome proliferator-activated receptors

RCT:

Randomized control trials

RXRα:

Retinoid X receptor-alpha

SREBP:

Sterol regulatory element-binding proteins

TG:

Triglycerides

VLDL:

Very low-density lipoprotein

References

  1. Micallef MA, Garg ML. Beyond blood lipids: phytosterols, statins and omega-3 polyunsaturated fatty acid therapy for hyperlipidemia. J Nutr Biochem. 2009;20(12):927–39.

    Article  CAS  PubMed  Google Scholar 

  2. Shearer GC, Savinova OV, Harris WS. Fish oil—how does it reduce plasma triglycerides? Biochem Biophys Acta. 2012;1821(5):843–51.

    CAS  PubMed  Google Scholar 

  3. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21(9):781–92.

    Article  CAS  PubMed  Google Scholar 

  4. Saunders AV, Davis BC, Garg ML. Omega-3 polyunsaturated fatty acids and vegetarian diets. Med J Aust. 2012;1(2):22–6.

    Article  Google Scholar 

  5. Dias CB, Garg R, Wood LG, Garg ML. Saturated fat consumption may not be the main cause of increased blood lipid levels. Med Hypotheses. 2014;82(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  6. Wei MY, Jacobson TA. Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum lipids: a systematic review and meta-analysis. Curr Atheroscler Rep. 2011;13(6):474–83.

    Article  CAS  PubMed  Google Scholar 

  7. Milte CM, Coates AM, Buckley JD, Hill AM, Howe PR. Dose-dependent effects of docosahexaenoic acid-rich fish oil on erythrocyte docosahexaenoic acid and blood lipid levels. Br J Nutr. 2008;99(5):1083–8.

    Article  CAS  PubMed  Google Scholar 

  8. Eslick GD, Howe PR, Smith C, Priest R, Bensoussan A. Benefits of fish oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int J Cardiol. 2009;136(1):4–16.

    Article  PubMed  Google Scholar 

  9. Lewis A, Lookinland S, Beckstrand RL, Tiedeman ME. Treatment of hypertriglyceridemia with omega-3 fatty acids: a systematic review. J Am Acad Nurse Prac. 2004;16(9):384–95.

    Article  Google Scholar 

  10. Harris WS. n-3 Fatty acids and serum lipoproteins: human studies. Am J Clin Nutr. 1997;65:1645–54.

    Google Scholar 

  11. Jacobson TA. Role of n-3 fatty acids in the treatment of hypertriglyceridemia an cardiovascular disease. Am J Clin Nutr. 2008;87:1981–90.

    Google Scholar 

  12. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atheroscler. 2006;189(1):19–30.

    Article  CAS  Google Scholar 

  13. Egert S, Kannenberg F, Somoza V, Erbersdobler HF, Wahrburg U. Dietary alpha-linolenic acid, EPA, and DHA have differential effects on LDL fatty acid composition but similar effects on serum lipid profiles in normolipidemic humans. J Nutr. 2009;139(5):861–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pirillo A, Catapano AL. Omega-3 polyunsaturated fatty acids in the treatment of atherogenic dyslipidemia. Atheroscler Suppl. 2013;14(2):237–42.

    Article  PubMed  Google Scholar 

  15. Park Y, Harris WS. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J Lipid Res. 2003;44(3):455–63.

    Article  PubMed  Google Scholar 

  16. Jacobson TA, Glickstein SB, Rowe JD, Soni PN. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol. 2012;6(1):5–18.

    Article  PubMed  Google Scholar 

  17. Goyens PL, Mensink RP. Effects of alpha-linolenic acid versus those of EPA/DHA on cardiovascular risk markers in healthy elderly subjects. Eur J Clin Nutr. 2006;60(8):978–84.

    Article  CAS  PubMed  Google Scholar 

  18. Minihane AM, Khan S, Leigh-Firbank EC, Talmud P, Wright JW, Murphy MC, et al. ApoE polymorphism and fish oil supplementation in subjects with an atherogenic lipoprotein phenotype. Arterioscler Thromb Vasc Biol. 2000;20(8):1990–7.

    Article  CAS  PubMed  Google Scholar 

  19. Chan DC, Watts GF, Barrett PH, Beilim LJ, Redgrave TG, Mori TA. Regulatory effects of HMG CoA reductase inhibitor and fish oils on apolipoprotein B-100 kinetics in insulin-resistant obese male subjects with dyslipidemia. Diabetes. 2002;51(8):2377–86.

    Article  CAS  PubMed  Google Scholar 

  20. Chan DC, Watts GF, Mori TA, Barrett PH, Redgrave TG, Beilim LJ. Randomized controlled trial of the effect of n-3 fatty acid supplementation on the metabolism of apolipoprotein B-100 and chylomicron remnants in men with visceral obesity. Am J Clin Nutr. 2003;77(2):300–7.

    CAS  PubMed  Google Scholar 

  21. Bordin P, Bodamer OA, Venkatesan S, Gray RM, Bannister PA, Halliday D. Effects of fish oil supplementation on apolipoprotein B100 production and lipoprotein metabolism in normolipidaemic males. Eur J Clin Nutr. 1998;52(2):104–9.

    Article  CAS  PubMed  Google Scholar 

  22. Dagnelie PC, Rietveld T, Swart GR, Stijnen T, van den Berg JW. Effect of dietary fish oil on blood levels of free fatty acids, ketone bodies and triacylglycerol in humans. Lipids. 1994;29(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  23. Abate N, Chandalia M, Snell PG, Grundy SM. Adipose tissue metabolites and insulin resistance in nondiabetic Asian Indian men. J Clin Endocrinol Metab. 2004;89(6):2750–5.

    Article  CAS  PubMed  Google Scholar 

  24. Vistisen B, Hellgren LI, Vadset T, Scheede-Bergdahl C, Helge JW, Dela F, et al. Effect of gender on lipid-induced insulin resistance in obese subjects. Eur J Endocrinol. 2008;158(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  25. Pavlic M, Valero R, Duez H, Xiao C, Szeto L, Patterson BW, et al. Triglyceride-rich lipoprotein-associated apolipoprotein C-III production is stimulated by plasma free fatty acids in humans. Arterioscler Thromb Vasc Biol. 2008;28(9):1660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park Y, Jones PG, Harris WS. Triacylglycerol-rich lipoprotein margination: a potential surrogate for whole-body lipoprotein lipase activity and effects of eicosapentaenoic and docosahexaenoic acids. Am J Clin Nutr. 2004;80(1):45–50.

    CAS  PubMed  Google Scholar 

  27. Bays HE, Tighe AP, Sadovsky R, Davidson MH. Prescription omega-3 fatty acids and their lipid effects, physiologic mechanisms of action and clinical implications. Expert Rev Cardiovasc Ther. 2008;6(3):391–409.

    Article  CAS  PubMed  Google Scholar 

  28. Khan S, Minihane AM, Talmud PJ, Wright JW, Murphy MC, Williams CM, et al. Dietary long-chain n-3PUFAs increase LpL gene expression in adipose tissue of subjects with an atherogenic lipoprotein phenotype. J Lipid Res. 2002;43(6):979–85.

    CAS  PubMed  Google Scholar 

  29. Fernandez ML, West KL. Mechanisms by which dietary fatty acids modulate plasma lipids. Am Soc for Nutr Sci. 2005;135:2075–8.

    CAS  Google Scholar 

  30. Swahn E, von Schenck H, Olsson AG. Omega-3 ethyl ester concentrate decreases total apolipoprotein CIII and increases antithrombin III in postmyocardial infarction patients. Clin Drug Investig. 1998;15(6):473–82.

    Article  CAS  PubMed  Google Scholar 

  31. Davidson MH, Maki KC, Bays H, Carter R, Ballantyne CM. Effects of prescription omega-3-acid ethyl esters on lipoprotein particle concentrations, apolipoproteins AI and CIII, and lipoprotein-associated phospholipase A(2) mass in statin-treated subjects with hypertriglyceridemia. J Clin Lipidol. 2009;3(5):332–40.

    Article  PubMed  Google Scholar 

  32. Krey G, Braissant O, L’Horset F, Kalkhoven E, Perroud M, Parker MG, et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997;11:779–91.

    Article  CAS  PubMed  Google Scholar 

  33. Hirako S, Kim H, Arai T, Chiba H, Matsumoto A. Effect of concomitantly used fish oil and cholesterol on lipid metabolism. J Nutr Biochem. 2010;21(7):573–9.

    Article  CAS  PubMed  Google Scholar 

  34. Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J. Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertrigylceridemia. J Biol Chem. 1994;269(38):23610–6.

    CAS  PubMed  Google Scholar 

  35. Bobik A. Apolipoprotein CIII and atherosclerosis: beyond effects on lipid metabolism. Circ. 2008;118(7):702–4.

    Article  Google Scholar 

  36. Jump DB. Dietary polunsaturated fatty acids and regulation of gene transcription. Curr Opin in Lipidol. 2002;13:155–64.

    Article  CAS  Google Scholar 

  37. Fisher EA, Pan M, Chen X, Wu X, Wang H, Jamil H, et al. The triple threat to nascent apolipoproteins B. Evidence for multiple, distinct, degradative pathways. J Biol Chem. 2001;276(30):27855–63.

    Article  CAS  PubMed  Google Scholar 

  38. Zheng X, Avella M, Botham KM. Comparison of the effects of dietary n-3 and n-6 polyunsaturated fatty acids on very-low-density lipoprotein secretion when delivered to hepatocytes in chylomicron remnants. Biochem J. 2001;357:481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lang CA, Davis RA. Fish oil fatty acids impair VLDL assembly and/or secretion by cultured rat hepatocytes. J Lipid Res. 1990;31(11).

    Google Scholar 

  40. Ishida T, Ohta M, Nakakuki M, Kami H, Uchiyama R, Kawano H, et al. Distinct regulation of plasma LDL cholesterol by eicosapentaenoic acid and docosahexaenoic acid in high fat diet-fed hamsters: participation of cholesterol ester transfer protein and LDL receptor. Prostaglandins Leukot Essent Fat Acids. 2013;88(4):281–8.

    Article  CAS  Google Scholar 

  41. Calabresi L, Donati D, Pazzucconi F, Sirtori CR, Franceschini G. Omacor in familial combined hyperlipidemia: effects on lipids and low density lipoprotein subclasses. Atheroscler. 2000;148(2):387–96.

    Article  CAS  Google Scholar 

  42. Stalenhoef AFH, de Graaf J, Wittekoek ME, Bredie SJH, Demacker PNM, Kastelein JJP. The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia. Atheroscler. 2000;153(1):129–38.

    Article  CAS  Google Scholar 

  43. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, et al. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr. 2000;71:1085–94.

    CAS  PubMed  Google Scholar 

  44. Oelrich B, Dewell A, Gardner CD. Effect of fish oil supplementation on serum triglycerides, LDL cholesterol and LDL subfractions in hypertriglyceridemic adults. Nutr Metab Cardiovasc Dis. 2013;23(4):350–7.

    Article  CAS  PubMed  Google Scholar 

  45. Rivellese AA, Maffettone A, Vessby B, Uusitupa M, Hermansen K, Berglund L, et al. Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atheroscler. 2003;167(1):149–58.

    Article  CAS  Google Scholar 

  46. Packard CJ. Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. Biochem Soc Trans. 2003;31(5):1066–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hartweg J, Farmer AJ, Holman RR, Neil A. Potential impact of omega-3 treatment on cardiovascular disease in type 2 diabetes. Curr Opin in Lipidol. 2009;20(1):30–8.

    Article  CAS  Google Scholar 

  48. Mori TA, Woodman RJ. The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. Curr Opin Clin Nutr Metab Care. 2006;9:95–104.

    Article  CAS  PubMed  Google Scholar 

  49. de Silva PP, Agarwal-Mawal A, Davis PJ, Cheema SK. The levels of plasma low density lipoprotein are independent of cholesterol ester transfer protein in fish-oil fed F1B hamsters. Nutr Metab (Lond). 2005;2(1):8.

    Article  Google Scholar 

  50. Nestel PJ. Fish oil and cardiovascular disease: lipids and arterial function. Am J Clin Nutr. 2000;71:228–31.

    Google Scholar 

  51. Bernstein AM, Ding EL, Willett WC, Rimm EB. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. J Nutr. 2012;142(1):99–104.

    Article  CAS  PubMed  Google Scholar 

  52. Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med. 2011;17(10):594–603.

    Article  CAS  PubMed  Google Scholar 

  53. Wooten JS, Biggerstaff KD, Ben-Exra V. Responses of LDL and HDL particle size and distribution to omega-3 fatty acid supplementation and aerobic exercise. J Appl Physiol. 2009;107:794–800.

    Article  CAS  PubMed  Google Scholar 

  54. Agren JJ, Hanninen O, Julkunen A, Fogelholm L, Vidgren H, Schwab U, et al. Fish diet, fish oil and docosahexaenoic acid rich oil lower fasting and postprandial plasma lipid levels. Eur J Clin Nutr. 1996;50(11):765–71.

    CAS  PubMed  Google Scholar 

  55. Hirano R, Igarashi O, Kondo K, Itakura H, Matsumoto A. Regulation by long-chain fatty acids of the expression of cholesteryl ester transfer protein in HepG2 cells. Lipids. 2001;36(4):401–6.

    Article  CAS  PubMed  Google Scholar 

  56. Wilkinson J, Higgins JA, Fitzsimmons C, Bowyer DE. Dietary fish oils modify the assembly of VLDL and expression of the LDL receptor in rabbit liver. Arterioscler Thromb Vasc Biol. 1998;18(9):1490–7.

    Article  CAS  PubMed  Google Scholar 

  57. Finegold JA, Manisty CH, Goldacre B, Barron AJ, Francis DP. What proportion of symptomatic side effects in patients taking statins are genuinely caused by the drug? Systematic review of randomized placebo-controlled trials to aid individual patient choice. Eur J Prev Cardiol. 2014;21(4):464–74.

    Article  PubMed  Google Scholar 

  58. Sultan S, Hynes N. The ugly side of statins. Systemic appraisal of the contemporary un-known unknowns. Open J Endocr Metab Dis. 2013;3(3):179–85.

    Article  Google Scholar 

  59. Doenyas-Barak K, Berman S, Abu-Hamad R, Golik A, Rahimi-Levene N, Efrati S. N-3 fatty acid supplementation to routine statin treatment inhibits platelet function, decreases patients’ daytime blood pressure, and improves inflammatory status. Eur J Clin Pharmacol. Aug 2012;68(8):1139–46.

    Google Scholar 

  60. Takaki A, Umemoto S, Ono K, Seki K, Ryoke T, Fujii A, et al. Add-on therapy of EPA reduces oxidative stress and inhibits the progression of Aortic stiffness in patients with coronary artery disease and statin therapy: a randomized controlled study. 2011;18(10):857–66.

    Google Scholar 

  61. Eussen SRBM, Geleijnse JM, Giltay EJ, Rompelberg CJM, Klungel OH, Kromhout D. Effects of n-3 fatty acids on major cardiovascular events in statin users and non-users with a history of myocardial infarction. Eur Heart J. 13 Jul 2012;33(13):1582–8.

    Google Scholar 

  62. Kim SH, Kim MK, Lee HY, Kang HJ, Kim YJ, Kim HS. Prospective randomized comparison between omega-3 fatty acid supplements plus simvastatin versus simvastatin alone in Korean patients with mixed dyslipidemia: Lipoprotein profiles and heart rate variability. Eur J Clin Nutr. Jan 2011;65(1):110–6.

    Google Scholar 

  63. Bays HE, McKenney J, Maki KC, Doyle RT, Carter R, Stein E. Effects of prescription omega-3-acid ethyl esters on non-high-density lipoprotein cholesterol when coadministered with escalating doses of atorvastatin. Mayo Clinic Proceedings. Feb 2010;85(2):122–8.

    Google Scholar 

  64. Matsuzaki M, Yokoyama M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, et al. Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease—Secondary prevention analysis from JELIS. Circ J. July 2009;73(7):1283–90.

    Google Scholar 

  65. Lee MW, Park JK, Hong JW, Kim KJ, Shin DY, Ahn CW, et al. Beneficial effects of omega-3 fatty acids on low density lipoprotein particle size in patients with type 2 diabetes already under statin therapy. Diabetes Metab J. 2013;37:207–11.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Choi CU, Seo HS, Lee EM, Shin SY, Choi U-J, Na JO, et al. Statins do not decrease small, dense low-density lipoprotein. Tex Heart Inst J. 2010;37(4):421–8.

    PubMed  PubMed Central  Google Scholar 

  67. Khandelwal S, Demonty I, Jeemon P, Lakshmy R, Mukherjee R, Gupta R, et al. Independent and interactive effects of plant sterols and fish oil n-3 long-chain polyunsaturated fatty acids on the plasma lipid profile of mildly hyperlipidaemic Indian adults. Br J Nutr. 2009;102:722–32.

    Article  CAS  PubMed  Google Scholar 

  68. Khandelwal S, Shidhaye R, Demonty I, Lakshmy R, Gupta R, Prabhakaran D, et al. Impact of omega-3 fatty acids and/or plant sterol supplementation on non-HDL cholesterol levels of dyslipidemic Indian adults. J Funct Foods. 2013;5:36–43.

    Google Scholar 

  69. Garaiova I, Muchová J, Nagyová Z, Mišľanová C, Oravec S, Dukát A, et al. Effect of a plant sterol, fish oil and B vitamin combination on cardiovascular risk factors in hypercholesterolemic children and adolescents: a pilot study. Nutr J. 2013;12(7).

    Google Scholar 

  70. Anderson JW. Dietary fiber, lipids and atherosclerosis. Am J Cardiol. 1987;60(12):G17–22.

    Article  Google Scholar 

  71. Anderson JW, Allgood LD, Lawrence A, Altringer LA, Jerdack GR, Hengehold DA, et al. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. Am J Clin Nutr. 1 Feb 2000;71(2):472–9.

    Google Scholar 

  72. Aller R, de Luis DA, Izaola O, La Calle F, del Olmo L, Fernandez L, et al. Effect of soluble fiber intake in lipid and glucose leves in healthy subjects: a randomized clinical trial. Diabetes Res Clin Pract. 2004;65(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  73. Reyna-Villasmil N, Bermudez-Pirela V, Mengual-Moreno E, Arias N, Cano-Ponce C, Leal-Gonzalez E, et al. Oat-derived β-glucan significantly improves HDLC and diminishes LDLC and non-HDL cholesterol in overweight individuals with mild hypercholesterolemia. Am J Ther. 2007;14(2):203–12.

    Article  PubMed  Google Scholar 

  74. Liu Y-C, Liu S-Y, Lin M-H. Effects of psyllium on plasma total and lipoprotein cholesterol and hepatic cholesterol in hamsters fed n–3 PUFA or n–6 PUFA with high cholesterol levels. Ann Nutr Metab. 2004;48:374–80.

    Article  CAS  PubMed  Google Scholar 

  75. Carvalho-Wells AL, Jackson KG, Gill R, Olano-Martin E, Lovegrove JA, Williams CM, et al. Interactions between age and apoE genotype on fasting and postprandial triglycerides levels. Atheroscler. 2010;212(2):481–7.

    Article  CAS  Google Scholar 

  76. Ruixing Y, Jinzhen W, Weixiong L, Yuming C, Dezhai Y, Shangling P. The environmental and genetic evidence for the association of hyperlipidemia and hypertension. J Hypertens. 2009;27(2):251–8.

    Article  PubMed  Google Scholar 

  77. Zintzaras E, Kitsios GD, Triposkiadis F, Lau J, Raman G. APOE gene polymorphisms and response to statin therapy. Pharm J. 2009;9(4):248–57.

    CAS  Google Scholar 

  78. Solanas-Barca M, de Castro-Oros I, Mateo-Gallego R, Cofan M, Plana N, Puzo J, et al. Apolipoprotein E gene mutations in subjects with mixed hyperlipidemia and a clinical diagnosis of familial combined hyperlipidemia. Atheroscler. 2012;222(2):449–55.

    Article  CAS  Google Scholar 

  79. Olano-Martin E, Anil E, Caslake MJ, Packard CJ, Bedford D, Stewart G, et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atheroscler. 2010;209(1):104–10.

    Article  CAS  Google Scholar 

  80. Demant T, Bedford D, Packard CJ, Shepherd J. Influence of apolipoprotein E polymorphism on apolipoprotein B-100 metabolism in normolipemic subjects. J Clin Invest. 1991;88:1490–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Welty FK, Lichtenstein AH, Barrett PH, Jenner JL, Dolnikowski GG, Schaefer EJ. Effects of ApoE genotype on ApoB-48 and ApoB-100 kinetics with stable isotopes in humans. Arterioscler Thromb Vasc Biol. 2000;20:1807–10.

    Article  CAS  PubMed  Google Scholar 

  82. Kitson AP, Stroud CK, Stark KD. Elevated production of docosahexaenoic acid in females: potential molecular mechanisms. Lipids. 2010;45(3):209–24.

    Article  CAS  PubMed  Google Scholar 

  83. Lohner S, Fekete K, Marosvolgyi T, Decsi T. Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. Ann Nutr Metab. 2013;62(2):98–112.

    Article  CAS  PubMed  Google Scholar 

  84. Crowe FL, Skeaff CM, Green TJ, Gray AR. Serum n-3 long-chain PUFA differ by sex and age in a population-based survey of New Zealand adolescents and adults. Br J Nutr. 2008;99(1):168–74.

    Article  CAS  PubMed  Google Scholar 

  85. Childs CE, Romeu-Nadal M, Burdge GC, Calder PC. Gender differences in the n-3 fatty acid content of tissues. Proc Nutr Soc. 2008;67(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  86. Blakewell L, Burdge GC, Calder PC. Polyunsaturated fatty acid concentrations in young men and women consuming their habitual diets. Br J Nutr. 2006;96:93–9.

    Google Scholar 

  87. Dewailly E, Blanchet C, Lemieux S, Sauve L, Gingras S, Ayotte P, et al. n3 Fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. Am J Clin Nutr. 2001;74:464–73.

    CAS  PubMed  Google Scholar 

  88. Giltay EJ, Gooren LJG, Toorians AWFT, Katan MB, Zock PL. Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr. 2004;80:1167–74.

    CAS  PubMed  Google Scholar 

  89. Phang M, Lincz LF, Garg ML. Eicosapentaenoic and docosahexaenoic acid supplementations reduce platelet aggregation and hemostatic markers differentially in men and women. J Nutr. 2013;143(4):457–63.

    Article  CAS  PubMed  Google Scholar 

  90. Bacova B, Sec P, Certik M, Tribulova N. Intake of n-3 polyunsaturated fatty acids increases omega-3 index in aged male and female spontaneously hypertensive rats. ISRN Nutr. 2013;2013:1–7.

    Article  Google Scholar 

  91. Dewailly E, Blanchet C, Gingras S, Lemieux S, Holub BJ. Cardiovascular disease risk factors and n-3 fatty acid status in the adult population of James Bay Cree. Am J Clin Nutr. 2002;76:85–92.

    CAS  PubMed  Google Scholar 

  92. Dewailly E, Blanchet C, Gingras S, Lemieux S, Sauve L, Bergeron J, et al. Relations between n−3 fatty acid status and cardiovascular disease risk factors among Quebecers. Am J Clin Nutr. 2001;74:604–11.

    Google Scholar 

  93. Sands SA, Reid KJ, Windsor SL, Harris WS. The impact of age, body mass index, and fish intake on the EPA and DHA content of human erythrocytes. Lipids. 2005;40(4):343–7.

    Article  CAS  PubMed  Google Scholar 

  94. Ferguson JJA, Veysey M, Lucock M, Niblett S, King K, MacDonald-Wicks L, et al. Association between n-3PUFA and blood lipids in older Australians (conference abstract). J Nutr Intermed Metab. 2014;(in press).

    Google Scholar 

  95. Harris WS. The omega-3 index as a risk factor for coronary heart disease. Am J Clin Nutr. 2008;87(Suppl.):1997–2002.

    Google Scholar 

  96. Dias CB, Garg R, Wood LG, Garg ML. Saturated fat consumption may not be the main cause of increased blood lipid levels. Med Hypotheses. 2014;82(2):187–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferguson, J.J.A., Dias, C.B., Garg, M.L. (2016). Omega-3 Polyunsaturated Fatty Acids and Hyperlipidaemias. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics