Skip to main content

Ecosystem Services Provided By Soil Microorganisms

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Ecosystem services are the contributions that ecosystems provide to human well-being. They arise from the interaction of biotic and abiotic processes, and refer specifically to the ‘final’ outputs or products from ecological systems. Soil harbours a large proportion of Earth's biodiversity, and provides the physical substrate for most human activities. Although soils have been widely studied and classified in terms of physical and chemical characteristics, knowledge of soil biodiversity and functioning are still incomplete. Soil organisms are extremely diverse and contribute to a wide range of ecosystem services that are essential to the sustainable functioning of natural and managed ecosystems. Microbial communities (mainly composed by Bacteria, Archaea and microfungi) are vital to soil ecosystem functioning. This is because they exist in enormous numbers and have an immense cumulative mass and activity. Most of the phenomena observed in the visible aboveground world are steered directly or indirectly by species, interactions, or processes in the belowground soil. In particular, being microbial communities involved in nutrient cycling and organic matter degradation, they can affect biodiversity and productivity of aboveground ecosystems. Microorganisms can have stimulating or inhibiting effects on plants by the release of metabolites with a varying range of activities. Microbial communities are the main responsible of soil homeostatic capabilities removing contaminants and providing key ecosystem regulating and supporting services such as soil fertility, resilience and resistance to different stress. This chapter aims at describing the contributions provided by soil microbial communities to different ecosystem services and their potential use as indicators of ecosystem functioning. Understanding ecosystem functioning and predicting responses to global changes calls for much better knowledge than we have today about microbial processes and interactions, including those with plants in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie, J., & Deslippe, J. R. (2013). Soil microbes and their contribution to soil services (pp. 143–161). Lincoln: Manaaki Whenua Press, Landcare Research.

    Google Scholar 

  • Ali, S. Z., Sandhya, V., & Venkateswar Rao, L. (2014). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64, 493–502.

    Article  CAS  Google Scholar 

  • Amann, R., & Rosselló-Móra, R. (2016). After all, only millions? mBio, 7, e00999-16.

    Google Scholar 

  • Ancona, V., Barra Caracciolo, A., Grenni, P., Di Lenola, M., Campanale, C., Calabrese, A., Uricchio, V.F., Mascolo, G., & Massacci, A. (2016). Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in Southern Italy. New Biotechnology. doi:http://doi.org/10.1016/j.nbt.2016.09.006.

  • Baelum, J., Nicolaisen, M. H., Holben, W. E., Strobel, B. W., Sorensen, J., & Jacobsen, C. S. (2008). Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. The ISME Journal, 2, 677–687.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, V., Smith, J., & Bolton, H. (2002). Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry, 34, 997–1007.

    Article  CAS  Google Scholar 

  • Bardgett, R. D., Freeman, C., & Ostle, N. J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805–814.

    Article  CAS  PubMed  Google Scholar 

  • Barra Caracciolo, A., Grenni, P., Saccà, M. L., Falconi, F., Di Landa, G., & Ciccoli, R. (2007). The Role of the Bacterial Community of an Agroecosystem in Simazine Degradation. Italian Journal of Agronomy, 2, 163–169.

    Article  Google Scholar 

  • Barra Caracciolo, A., Bottoni, P., & Grenni, P. (2013). Microcosm studies to evaluate microbial potential to degrade pollutants in soil and water ecosystems. Microchemical Journal, 107, 126–130.

    Article  CAS  Google Scholar 

  • Bennett, L. T., Mele, P. M., Annett, S., & Kasel, S. (2010). Examining links between soil management, soil health, and public benefits in agricultural landscapes: An Australian perspective. Agriculture, Ecosystems and Environment, 139, 1–12.

    Article  Google Scholar 

  • Blaya, J., Marhuenda, F. C., Pascual, J. A., & Ros, M. (2016). Microbiota characterization of compost using omics approaches opens new perspectives for phytophthora root rot control. PLOS ONE, 11, e0158048.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boivin, M. E., Breure, A., Posthuma, L., & Rutgers, M. (2002). Determination of field effects of contaminants—significance of pollution-induced community tolerance. Human and Ecological Risk Assessment: An International Journal, 8, 1035–1055.

    Article  Google Scholar 

  • Bonilla, N., Gutiérrez-Barranquero, J., Vicente, A., & Cazorla, F. (2012). Enhancing Soil Quality and Plant Health Through Suppressive Organic Amendments. Diversity, 4, 475–491.

    Article  Google Scholar 

  • van Bruggen, A. H. C., & Semenov, A. M. (2000). In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 15, 13–24.

    Article  Google Scholar 

  • Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of plant diseases. In: M. Stoytcheva (Ed), Pesticides in the modern world – Pesticides use and management (pp. 273–302). InTech. Available at http://www.intechopen.com/books/pesticides-in-themodern-world-pesticides-use-and-management/bacillus-based-biological-control-of-plant-diseases

  • Cazorla, F. M., & Mercado-Blanco, J. (2016). Biological control of tree and woody plant diseases: an impossible task? BioControl, 61, 233–242.

    Article  Google Scholar 

  • CEC. (2006). Commission of the European Communities. COM(2006)231 final. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. In: Thematic strategy for soil protection (pp. 1–16). Brussels. Available at http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52006DC0231&from=EN. Accessed April 2017.

  • Ciancio, A., Pieterse, C. M. J., & Mercado-Blanco, J. (2016). Editorial: Harnessing Useful Rhizosphere Microorganisms for Pathogen and Pest Biocontrol. Frontiers in Microbiology, 7, 1620.

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  CAS  Google Scholar 

  • De Roy, K., Marzorati, M., Negroni, A., Thas, O., Balloi, A., Fava, F., Verstraete, W., Daffonchio, D., & Boon, N. (2013). Environmental conditions and community evenness determine the outcome of biological invasion. Nature Communications, 4, 1383–1387.

    Article  PubMed  Google Scholar 

  • Dennis, P., Edwards, E. A., Liss, S. N., & Fulthorpe, R. (2003). Monitoring gene expression in mixed microbial communities by using DNA microarrays. Applied and Environmental Microbiology, 69, 769–778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Elsas, J. D., Costa, R., Jansson, J., Sjoling, S., Bailey, M., Nalin, R., Vogel, T. M., & van Overbeek, L. (2008). The metagenomics of disease suppressive soils – Experiences from the METACONTROL project. Trends in Biotechnology, 26, 591–601.

    Article  PubMed  Google Scholar 

  • van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā, D., Krištůfek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences, USA, 109, 1159–1164.

    Article  Google Scholar 

  • Dimkpa, C. O., Svatos, A., Dabrowska, P., Schmidt, A., Boland, W., & Kothe, E. (2008). Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere, 74, 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment, 32, 1682–1694.

    Article  CAS  PubMed  Google Scholar 

  • Dominati, E., Patterson, M., & Mackay, A. (2010). A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 69, 1858–1868.

    Article  Google Scholar 

  • Doornbos, R. F., Loon, L. C., & Bakker, P. A. H. M. (2011). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32, 227–243.

    Article  Google Scholar 

  • Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3–11.

    Article  Google Scholar 

  • Drigo, B., Kowalchuk, G. A., Yergeau, E., Bezemer, T. M., Boschker, H. T. S., & Van Veen, J. A. (2007). Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubra. Global Change Biology, 13, 2396–2410.

    Article  Google Scholar 

  • Eyers, L., George, I., Schuler, L., Stenuit, B., Agathos, S. N., & El Fantroussi, S. (2004). Environmental genomics: Exploring the unmined richness of microbes to degrade xenobiotics. Applied Microbiology and Biotechnology, 66, 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Fajardo, C., Saccà, M. L., Gibello, A., Martinez-Inigo, M. J., Nande, M., Lobo, C., & Martin, M. (2012). Assessment of s-triazine catabolic potential in soil bacterial isolates applying atz genes as functional biomarkers. Water Air and Soil Pollution, 223, 3385–3392.

    Article  CAS  Google Scholar 

  • FAO and ITPS. 2015). Status of the World’s Soil Resources (SWSR). Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy, pp. 1–648. Available at http://www.fao.org/3/a-i5199e.pdf, Accessed April 2017.

  • Fava, F., Bertin, L., Fedi, S., & Zannoni, D. (2003). Methyl-b-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnology and Bioengineering, 81, 381–390.

    Article  CAS  PubMed  Google Scholar 

  • Fierer, N., Grandy, A. S., Six, J., & Paul, E. A. (2009). Searching for unifying principles in soil ecology. Soil Biology and Biochemistry, 41, 2249–2256.

    Article  CAS  Google Scholar 

  • Floch, C., Chevremont, A. C., Joanico, K., Capowiez, Y., & Criquet, S. (2011). Indicators of pesticide contamination: Soil enzyme compared to functional diversity of bacterial communities via Biolog® Ecoplates. European Journal of Soil Biology, 47, 256–263.

    Article  CAS  Google Scholar 

  • Forni, C., Duca, D., & Glick, B. R. (2017). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 410, 335–356.

    Article  CAS  Google Scholar 

  • Franchi, E., Agazzi, G., Rolli, E., Borin, S., Marasco, R., Chiaberge, S., Conte, A., Filtri, P., Pedron, F., Rosellini, I., Barbafieri, M., & Petruzzelli, G. (2016). Exploiting hydrocarbon-degrading indigenous bacteria for bioremediation and phytoremediation of a multicontaminated soil. Chemical Engineering and Technology, 39, 1676–1684.

    Article  CAS  Google Scholar 

  • Gomes, N. C., Kosheleva, I. A., Abraham, W. R., & Smalla, K. (2005). Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiology Ecology, 54, 21–33.

    Article  CAS  PubMed  Google Scholar 

  • Graham, E. B., Knelman, J. E., Schindlbacher, A., Siciliano, S., Breulmann, M., Yannarell, A., Beman, J. M., Abell, G., Philippot, L., Prosser, J., Foulquier, A., Yuste, J. C., Glanville, H. C., Jones, D. L., Angel, R., Salminen, J., Newton, R. J., Bürgmann, H., Ingram, L. J., Hamer, U., Siljanen, H. M. P., Peltoniemi, K., Potthast, K., Bañeras, L., Hartmann, M., Banerjee, S., Yu, R.-Q., Nogaro, G., Richter, A., Koranda, M., Castle, S. C., Goberna, M., Song, B., Chatterjee, A., Nunes, O. C., Lopes, A. R., Cao, Y., Kaisermann, A., Hallin, S., Strickland, M. S., Garcia-Pausas, J., Barba, J., Kang, H., Isobe, K., Papaspyrou, S., Pastorelli, R., Lagomarsino, A., Lindström, E. S., Basiliko, N., Nemergut, D., & R. (2016). Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes? Frontiers in Microbiology, 7, 1–10.

    Google Scholar 

  • Grenni, P., Gibello, A., Barra Caracciolo, A., Fajardo, C., Nande, M., Vargas, R., Saccà, M. L., Martinez-Iñigo, M. J., Ciccoli, R., & Martín, M. (2009a). A new fluorescent oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus wratislaviensis in contaminated groundwater and soil samples. Water Research, 43, 2999–3008.

    Article  CAS  PubMed  Google Scholar 

  • Grenni, P., Barra Caracciolo, A., Rodríguez-Cruz, M., & Sánchez-Martín, M. (2009b). Changes in the microbial activity in a soil amended with oak and pine residues and treated with linuron herbicide. Applied Soil Ecology, 41, 2–7.

    Article  Google Scholar 

  • Grenni, P., Rodríguez-Cruz, M. S., Herrero-Hernández, E., Marín-Benito, J. M., Sánchez-Martín, M. J., & Barra Caracciolo, A. (2012). Effects of wood amendments on the degradation of terbuthylazine and on soil microbial community activity in a clay loam soil. Water, Air, and Soil Pollution, 223, 5401–5412.

    Article  CAS  Google Scholar 

  • Griffiths, B. S., Bonkowski, M., Roy, J., & Ritz, K. (2001). Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Applied Soil Ecology, 16, 49–61.

    Article  Google Scholar 

  • Griffiths, B. S., Römbke, J., Schmelz, R. M., Scheffczyk, A., Faber, J. H., Bloem, J., Pérès, G., Cluzeau, D., Chabbi, A., Suhadolc, M., Sousa, J. P., Martins Da Silva, P., Carvalho, F., Mendes, S., Morais, P., Francisco, R., Pereira, C., Bonkowski, M., Geisen, S., Bardgett, R. D., De Vries, F. T., Bolger, T., Dirilgen, T., Schmidt, O., Winding, A., Hendriksen, N. B., Johansen, A., Philippot, L., Plassart, P., Bru, D., Thomson, B., Griffiths, R. I., Bailey, M. J., Keith, A., Rutgers, M., Mulder, C., Hannula, S. E., Creamer, R., & Stone, D. (2016). Selecting cost effective and policyrelevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators, 69, 213–223.

    Article  Google Scholar 

  • Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Haines-Young, R. (2016) Support to EEA tasks under the EU MAES process. Negotiated procedure No EEA/NSS/16/002. Report of Results of a Survey to Assess the Use of CICES, 2016 (Deliverable 2), pp. 1–22. Available at http://cices.eu/content/uploads/sites/8/2016/07/Report-on-Survey-Results_19072016_Upload.pdf, Accessed April 2017.

  • Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312, 7–14.

    Article  CAS  Google Scholar 

  • Hashmi, M. Z., Qin, Z., Yao, X., Ahmed, Z., Xiaomei, S., Shen, C., & Tang, X. (2016). PCBs attenuation and abundance of Dehalococcoides spp., bphC, CheA, and flic genes in typical polychlorinated biphenyl-polluted soil under floody and dry soil conditions. Environmental Science and Pollution Research, 23, 3907–3913.

    Article  CAS  PubMed  Google Scholar 

  • IPCC. (2014). Climate change 2014 synthesis report. In: R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, pp. 1–151.

    Google Scholar 

  • Kjellerup, B. V., Paul, P., Ghosh, U., May, H. D., & Sowers, K. R. (2012). Spatial distribution of PCB dechlorinating bacteria and activities in contaminated soil. Applied and Environmental Soil Science, 2012, 1–11.

    Article  Google Scholar 

  • La Notte, A., Maes, J., Dalmazzone, S., Crossman, N. D., Grizzetti, B., & Bidoglio, G. (2017). Physical and monetary ecosystem service accounts for Europe: A case study for in-stream nitrogen retention. Ecosystem Services, 23, 18–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22.

    Article  CAS  Google Scholar 

  • Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., & Rossi, J.-P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15.

    Article  Google Scholar 

  • Luo, W., D’Angelo, E. M., & Coyne, M. S. (2008). Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere, 70, 364–373.

    Article  CAS  PubMed  Google Scholar 

  • Maes. (2013). Mapping and assessment of ecosystems and their services. An analytical framework for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020, pp. 1–60.

    Google Scholar 

  • Marx, V. (2017). Microbiology: the return of culture. Nature Methods, 14, 37–40.

    Article  CAS  Google Scholar 

  • Mazzola, M. (2002). Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie van Leeuwenhoek, 81, 557–564.

    Article  CAS  PubMed  Google Scholar 

  • MEA (2005). Millennium ecosystem assessment – Ecosystems and human well-being: Synthesis, pp. 1–155. Available at http://www.millenniumassessment.org/documents/document.356.aspx.pdf. Accessed April 2017.

  • Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  • Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., Giovannini, E. (2005). Handbook on constructing composite indicators (pp. 1–162). Paris: OECD Publishing. Available at https://www.oecd.org/std/42495745.pdf. Accessed April 2017.

  • Orgiazzi, A., Bardgett, R. D., Barrios, E., Behan-Pelletier, V., Briones, M. J. I., Chotte, J.- L., De Deyn, G. B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N. C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F. M. S., Ramirez, K. S., Scheu, S., Singh, B. K., Six, J., van der Putten, W. H., & Wall, D. H. (2016) Global soil biodiversity atlas. Luxembourg: Publications Office of the European Union. Available at http://esdac.jrc.ec.europa.eu/content/global-soil-biodiversity-atlas. Accessed Apr 2017.

  • Palaniyandi, S. A., Yang, S. H., Zhang, L., & Suh, J. W. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 97, 9621–9636.

    Article  CAS  PubMed  Google Scholar 

  • Paul, D., Pandey, G., Meier, C., Roelof Van Der Meer, J., & Jain, R. K. (2006). Bacterial community structure of a pesticide-contaminated site and assessment of changes induced in community structure during bioremediation. FEMS Microbiology Ecology, 57, 116–127.

    Article  CAS  PubMed  Google Scholar 

  • Philippot, L., Ritz, K., Pandard, P., Hallin, S., & Martin-Laurent, F. (2012). Standardisation of methods in soil microbiology: Progress and challenges. FEMS Microbiology Ecology, 82, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Pino, N., & Peñuela, G. (2011). Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. International Biodeterioration and Biodegradation, 65, 827–831.

    Article  CAS  Google Scholar 

  • Pulleman, M. M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Pérès, G., & Rutgers, M. (2012). Soil biodiversity, biological indicators and soil ecosystem services—An overview of European approaches. Current Opinion in Environmental Sustainability, 4, 529–538.

    Article  Google Scholar 

  • Raaijmakers, J. M., Weller, D. M., & Thomashow, L. S. (1997). Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Applied and Environmental Microbiology, 63, 881–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold-Hurek, B., Bünger, W., Burbano, C. S., Sabale, M., & Hurek, T. (2015). Roots shaping their microbiome: Global hotspots for microbial activity. Annual Review of Phytopathology, 53, 403–424.

    Article  CAS  PubMed  Google Scholar 

  • Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A., & Wood, C. (2009). Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecological Indicators, 9, 1212–1221.

    Article  CAS  Google Scholar 

  • Roesch, L. F., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K., Kent, A. D., Daroub, S. H., Camargo, F. A., Farmerie, W. G., & Triplett, E. W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1, 283–290. doi:10.1038/ismej.2007.53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rutgers, M., van Wijnen, H. J., Schouten, A. J., Mulder, C., Kuiten, A. M. P., Brussaard, L., & Breure, A. M. (2012). A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Science of The Total Environment, 415, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Schloss, P. D., Girard, R. A., Martin, T., Edwards, J., & Thrash, J. C. (2016) Status of the archaeal and bacterial census: an update. mBio, 7, e00201-16.

    Google Scholar 

  • Sipilä, T. P., Keskinen, A. K., Akerman, M. L., Fortelius, C., Haahtela, K., & Yrjälä, K. (2008). High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. The ISME Journal, 2, 968–981.

    Article  PubMed  Google Scholar 

  • Spohn, M. (2016). Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic and Applied Ecology, 17, 471–478.

    Article  Google Scholar 

  • Thijs, S., Sillen, W., Rineau, F., Weyens, N., & Vangronsveld, J. (2016). Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: Engineering the metaorganism. Frontiers in Microbiology, 7, 341.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turbé, A., De Toni, A., Benito, P., Lavelle, P. A., Lavelle, P. E., Ruiz, N., Van der Putten, W. H., Labouze, E., & Mudgal, S. (2010). Soil biodiversity: Functions, threaths and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment), 254 pp.

    Google Scholar 

  • US EPA. (1999). United States Environmental Protection Agency. Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage of tank sites. In: US Environmental Protection, Office of solid waste and emergency response. OSWER Directive 9200, 4–17. Available at https://www.epa.gov/sites/production/files/2014-02/documents/d9200.4-17.pdf. Accessed April 2017.

  • Vida, C., Bonilla, N., De Vicente, A., & Cazorla, F. M. (2016). Microbial profiling of a suppressiveness-induced agricultural soil amended with composted almond shells. Frontiers in Microbiology, 7, 1–14.

    Article  Google Scholar 

  • Vogel, T. M., Simonet, P., Jansson, J. K., Hirsch, P. R., Tiedje, J. M., van Elsas, J. D., Bailey, M. J., Nalin, R., & Philippot, L. (2009). TerraGenome: A consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology, 7, 252.

    Article  CAS  Google Scholar 

  • Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266–5270.

    Article  CAS  Google Scholar 

  • Walthall, C. L., Hatfield, J., Backlund, P., Lengnick, L., Marshall, E., Walsh, M., Adkins, S., Aillery, M., Ainsworth, E.A., Ammann, C., Anderson, C.J., Bartomeus, I., Baumgard, L.H., Booker, F., Bradley, B., Blumenthal, D.M., Bunce, J., Burkey, K., Dabney, S. M., Delgado, J. A., Dukes, J., Funk, A., Garrett, K., Glenn, M., Grantz, D. A., Goodrich, D., Hu, S., Izaurralde, R. C., Jones R. A. C., Kim, S- H., Leaky, A. D. B., Lewers, K., Mader, T. L., McClung, A., Morgan, J., Muth, D. J., Nearing, M., Oosterhuis, D. M., Ort, D., Parmesan, C., Pettigrew, W. T., Polley, W., Rader, R., Rice, C., Rivington, M., Rosskopf, E., Salas, W. A., Sollenberger, L. E., Srygley, R., Stöckle, C., Takle, E. S., Timlin, D., White, J. W., Winfree, R., Wright-Morton, L., & Ziska, L. H. (2012). Climate change and agriculture in the United States: Effects and adaptation. USDA Technical Bulletin 1935. Washington, DC, pp. 1–186. Available at https://www.usda.gov/oce/climate_change/effects_2012/CC%20and%20Agriculture%20Report%20(02-04-2013)b.pdf. Accessed Apr 2017.

  • Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.

    Article  CAS  PubMed  Google Scholar 

  • Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., Cordero, O. X., Brown, S. P., Momeni, B., Shou, W., Kettle, H., Flint, H. J., Haas, A. F., Laroche, B., Kreft, J. U., Rainey, P. B., Freilich, S., Schuster, S., Milferstedt, K., van der Meer, J. R., Groβ Kopf, T., Huisman, J., Free, A., Picioreanu, C., Quince, C., Klapper, I., Labarthe, S., Smets, B. F., Wang, H., Isaac Newton Institute Fellows, & Soyer, O. S. (2016). Challenges in microbial ecology: Building predictive understanding of community function and dynamics. The ISME Journal, 10, 2557–2568.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wubs, E. R. J., van der Putten, W. H., Bosch, M., & Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2, 16107.

    Article  PubMed  Google Scholar 

  • Yagi, J. M., Suflita, J. M., Gieg, L. M., Derito, C. M., Jeon, C. O., & Madsen, E. L. (2010). Subsurface cycling of nitrogen and anaerobic aromatic hydrocarbon biodegradation revealed by nucleic acid and metabolic biomarkers. Applied and Environmental Microbiology, 76, 3124–3134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Grenni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Saccá, M.L., Barra Caracciolo, A., Di Lenola, M., Grenni, P. (2017). Ecosystem Services Provided By Soil Microorganisms. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_2

Download citation

Publish with us

Policies and ethics