Skip to main content

Epiphytic Plants in a Changing World-Global: Change Effects on Vascular and Non-Vascular Epiphytes

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 70))

Epiphytes have been called particularly vulnerable to climate change because of their existence at the interface of vegetation and atmosphere. We review the available evidence for this notion and put our analysis into the larger context of human-induced changes in general. Besides climate change, land use changes adversely affect epiphytes, while other factors, e.g. biotic exchange, are of lesser importance in this life form. Both land use change and climate change primarily affect hygrophilic taxa, while drought-resistant species may sometimes even benefit. Vascular and non-vascular epiphytes in tropical cloud forests will seriously suffer from decreased moisture input. In contrast, varying precipitation in more seasonal lowland forests seems to affect vascular species rather little, but a possible negative impact of rising temperatures on plant performance is unexplored. For co-occurring lichens and bryophytes, however, rising temperatures could have disastrous effects, as suggested by model calculations. In the temperate zones, global warming should allow range extensions towards the poles for vascular epiphytes and lead to new assemblages among non-vascular epiphytes. In spite of this mixed picture, epiphytes as a group may indeed be “particularly” threatened by global change, because the habitats characterised by exceptional species richness, e.g. tropical cloud forests, are those most seriously affected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acebey A, Gradstein SR, Krömer T (2003) Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. Journal of Tropical Ecology 19:9–18

    Google Scholar 

  • Andersson MS, Gradstein SR (2005) Impact of management intensity on non-vascular epiphyte diversity in cacao plantations in western Ecuador. Biodiversity and Conservation 14:1101–1120

    Google Scholar 

  • Aptroot A (in preparation) Lichen as an indicator of climate and global change. In: Letcher TM (ed) Climate and global change: Observed impacts on planet earth

    Google Scholar 

  • Aptroot A, van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146:293–298

    PubMed  CAS  Google Scholar 

  • Archibold OW (1995) Ecology of world vegetation. Chapman & Hall, London.

    Google Scholar 

  • Bader MY, van Geloof I, Rietkerk M (2007) High solar radiation hinders tree establishment above the alpine treeline in northern Ecuador. Plant Ecology 191:33–45

    Google Scholar 

  • Barlow J et al (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences of the United States of America 104:18555–18560

    PubMed  CAS  Google Scholar 

  • Barthlott W, Schmit-Neuerburg V, Nieder J, Engwald S (2001) Diversity and abundance of vascular epiphytes: A comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152:145–156

    Google Scholar 

  • Belinchón R, Martínez I, Escudero A, Aragón G, Valladares F (2007) Edge effects on epiphytic communities in a Mediterranean Quercus pyrenaica forest. Journal of Vegetation Science 18:81–90

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, Cambridge.

    Google Scholar 

  • Benzing DH (1998) Vulnerabilities of tropical forests to climate change: The significance of resident epiphytes. Climatic Change 39:519–540

    Google Scholar 

  • Benzing DH (2004) Vascular epiphytes. In: Lowman MD, Rinker BH (eds) Forest canopies, 2nd edn. Elsevier, San Diego, pp 175–211

    Google Scholar 

  • Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist 176:375–389

    PubMed  CAS  Google Scholar 

  • Cardelús C, Colwell RK, Watkins Jr JE (2006) Vascular epiphyte distribution patterns: Explaining the mid-elevation richness peak. Journal of Ecology 94:144–156

    Google Scholar 

  • Cascante-Marin A, Wolf JHD, Oostermeijer JGB, den Nijs JCM, Sanahuja O, Duran-Apuy A (2006) Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. Basic and Applied Ecology 7:520–532

    Google Scholar 

  • Chapman WS, King GC (1983) Floristic composition and structure of rainforest area 25 years after logging. Australian Journal of Ecology 8:415–423

    Google Scholar 

  • Clark KL, Nadkarni NM, Gholz HL (2005) Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest. Biotropica 37:328–336

    Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of severe drought. Ecological Monographs 65:419–439

    Google Scholar 

  • Cornelissen JHC, Gradstein SR (1990) On the occurrence of bryophytes and macrolichens in different lowland rain forest types of Mabura Hill, Guyana. Tropical Bryology 3:29–35

    Google Scholar 

  • Cornelissen JHC, Ter Steege T (1989) Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. Journal of Tropical Ecology 5:131–150

    Google Scholar 

  • Cunningham SC, Read J (2003) Do temperate rainforest trees have a greater ability to acclimate to changing temperatures than tropical rainforest trees?. New Phytologist 157:55–64

    Google Scholar 

  • DeLucia EH et al (2003) The contribution of bryophytes to the carbon exchange for a temperature rainforest. Global Change Biology 9:1158–1170

    Google Scholar 

  • Diaz HF, Graham NE (1996) Recent changes in tropical freezing heights and the role of sea surface temperature. Nature 383:152–155

    CAS  Google Scholar 

  • Downs RJ (1964) Photocontrol of germination of seed of the Bromeliaceae. Phyton 21:1–6

    Google Scholar 

  • Drennan PM, Nobel PS (2000) Responses of CAM species to increasing atmospheric CO2 concentrations. Plant, Cell and Environment 23:767–781

    CAS  Google Scholar 

  • Ellis CJ, Coppins BJ, Dawson TP (2007) Predicted response of the lichen epiphyte Lecanora populicola to climate change scenarios in a clean-air region of Northern Britain. Biological Conservation 135:396–404

    Google Scholar 

  • Farmer AM, Bates JW, Bell JNB (1992) Ecophysiological effects of acid rain on bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 284–313

    Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    PubMed  CAS  Google Scholar 

  • Forman RTT (1975) Canopy lichens with blue-green algae: A nitrogen source in a Columbian rain forest. Ecology 56:1176–1184

    Google Scholar 

  • Foster PN (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Science Reviews 55:73–106

    Google Scholar 

  • Fowler D et al (1999) The global exposure of forests to air pollutants. Water, Air, and Soil Pollution 116:5–32

    CAS  Google Scholar 

  • Frahm J-P (1990) Bryophyte phytomass in tropical ecosystems. Botanical Journal of the Linnean Society 104:23–33

    Google Scholar 

  • Frahm J-P (2001) Bryophytes as indicators of recent climate fluctuations in Central Europe. Lindbergia 26:97–104

    Google Scholar 

  • Frahm J-P (2002) Epiphytenwahnsinn. Bryologische Rundbriefe 53:7

    Google Scholar 

  • Frahm J-P (2003) Climatic habitat differences of epiphytic lichens and bryophytes. Cryptogamie Bryologie 24:3–14

    Google Scholar 

  • Frank JH, Cooper TM, Larson BC (2006) Metamasius callizona (Coleoptera: Dryophthoridae): Longevity and fecundity in the laboratory. Florida Entomologist 89:208–211

    Google Scholar 

  • Friedel A, Oheimb GV, Dengler J, Härdtle W (2006) Species diversity and species composition of epiphytic bryophytes and lichens–A comparison of managed and unmanaged beech forests in NE Germany. Feddes Repertorium 117:172–185

    Google Scholar 

  • Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74:205–233

    Google Scholar 

  • Gilbert OL (1992) Lichen reinvasion with declining air polution. In: Bates JF, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 159–177

    Google Scholar 

  • Graciano C, Fernández LV, Caldiz DO (2003) Tillandsia recurvata L. as a bioindicator of sulfur atmospheric pollution. Ecología Austral 13:3–14

    Google Scholar 

  • Gradstein SR (1992) The vanishing tropical rain forest as an environment for bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 234–258

    Google Scholar 

  • Gradstein SR (2008) Epiphytes of tropical montane forests – impact of deforestation and climate change. In: Gradstein SR, Gansert D, Homeier J (eds) The tropical mountain forest – patterns and processes in a biodiversity hotspot. University of Göttingen Press, Göttingen

    Google Scholar 

  • Grau O, Grytnes J-A, Birks HJB (2007) A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. Journal of Biogeography 34:1907–1915

    Google Scholar 

  • Gutschick VP (2007) Plant acclimation to elevated CO2 – from simple regularities to biogeographic chaos. Ecological Modelling 200:433–451

    Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227:145–148

    PubMed  CAS  Google Scholar 

  • Hietz P (2005) Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conservation Biology 19:391–399

    Google Scholar 

  • Hietz P, Briones O (1998) Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305–316

    Google Scholar 

  • Hietz P, Buchberger G, Winkler M (2006) Effect of forest disturbance on abundance and distribution of epiphytic bromeliads and orchids. Ecotropica 12:103–112

    Google Scholar 

  • Hofstede RGM, Wolf JHD, Benzing DH (1993) Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14:37–45

    Google Scholar 

  • Holt RD (1990) The microevolutionary consequences of climate change. Trends in Ecology & Evolution 5:311–315

    Google Scholar 

  • Holz I, Gradstein RS (2005) Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica–Species richness, community composition and ecology. Plant Ecology 178:89–109

    Google Scholar 

  • Ibisch PL, Boegner A, Nieder J, Barthlott W (1996) How diverse are neotropical epiphytes? An analysis based on the “Catalogue of the flowering plants and gymnosperms of Peru”. Ecotropica 2:13–28

    Google Scholar 

  • Jenkins DW (1999) Cold hardiness and cold sensitivity of bromeliads. Journal of the Bromeliad Society 49:32–41

    Google Scholar 

  • Kantvilas G, Jarman SJ (1993) The cryptogamic flora of an isolated rainforest fragment in Tasmania. Botanical Journal of the Linnean Society 111:211–228

    Google Scholar 

  • Kessler M (2001) Pteridophyte species richness in Andean forests in Bolivia. Biodiversity and Conservation 10:1473–1495

    Google Scholar 

  • Knops JMH, Nash Iii TH, Schlesinger WH (1996) The influence of epiphytic lichens on the nutrient cycling of an Oak Woodland. Ecological Monographs 66:159–179

    Google Scholar 

  • Krömer T, Gradstein SR (2003) Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24:190–195

    Google Scholar 

  • Kuusinen M, Siitonen J (1998) Epiphytic lichen diversity in old-growth and managed Picea abies stands in southern Finland. Journal of Vegetation Science 9:283–292

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2004) Lichen carbon gain under tropical conditions: Water relations and CO 2 exchange of Lobariaceae species of a lower montane rainforest in Panama. Lichenologist 36:329–342

    Google Scholar 

  • Lasso E, Ackerman JD (2003) Flowering phenology of Werauhia sintenisii, a bromeliad from the dwarf montane forest in Puerto Rico: An indicator of climate change?. Selbyana 24:95–104

    Google Scholar 

  • Laube S, Zotz G (2006) Neither host-specific nor random: Vascular epiphytes on three tree species in a Panamanian lowland forest. Annals of Botany 97:1103–1114

    PubMed  Google Scholar 

  • Laube S, Zotz G (2007) A metapopulation approach to the analysis of long-term changes in the epiphyte vegetation on the host tree Annona glabra. Journal of Vegetation Science 18:613–624

    Google Scholar 

  • Laurance WF, Delamônica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404:836

    PubMed  CAS  Google Scholar 

  • Laurance WF, Powell G, Hansen L (2002) A precarious future for Amazonia. Trends in Ecology & Evolution 17:251–252

    Google Scholar 

  • Lawton RO, Nair US, Pielke RA, Welch RM (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–587

    PubMed  CAS  Google Scholar 

  • León-Vargas Y, Engwald S, Proctor MCF (2006) Microclimate, light adaptation and desiccation tolerance of epiphytic bryophytes in two Venezuelan cloud forests. Journal of Biogeography 33:901–913

    Google Scholar 

  • Lewis SL et al (2004) Concerted changes in tropical forest structure and dynamics: Evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society of London Series B - – Biological Sciences 359:421–436

    CAS  Google Scholar 

  • Li CR, Gan LJ, Xia K, Zhou X, Hew CS (2002) Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment. Plant, Cell and Environment 25:369–377

    CAS  Google Scholar 

  • Lõhmus P, Rosenvald R, Lõhmus A (2006) Effectiveness of solitary retention trees for conserving epiphytes: Differential short-term responses of bryophytes and lichens. Canadian Journal of Forest Research 36:1319–1330

    Google Scholar 

  • Loope L, Duever M, Herndon A, Snyder J, Jansen D (1994) Hurricane impact on uplands and freshwater swamp forest: Large trees and epiphytes sustained the greatest damage during Hurricane Andrew. BioScience 44:238–246

    Google Scholar 

  • Lopez RG, Runkle ES (2005) Environmental physiology of growth and flowering of orchids. Hortscience 40:1969–1973

    Google Scholar 

  • Lovejoy TE, Hannah L (eds) (2005) Climate change and biodiversity. Yale University Press, New Haven.

    Google Scholar 

  • Lugo AE, Scatena FN (1992) Epiphytes and climate change research in the Caribbean: A proposal. Selbyana 13:123–130

    Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20:538–548

    PubMed  Google Scholar 

  • Malhi Y, Phillips O (eds) (2005) Tropical forests and global atmospheric change. Oxford University Press, Oxford.

    Google Scholar 

  • McCune B (1993) Gradients in epiphyte biomass in 3 Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. Bryologist 96:405–411

    Google Scholar 

  • Medeiros AC, Loope LL, Anderson SJ (1993) Differential colonization of epiphytes on native (Cibotium spp.) and alien (Cyathea cooperi) tree ferns in a Hawaiian rain forest. Selbyana 14:71–74

    Google Scholar 

  • Mikhailova IN (2007) Populations of epiphytic lichens under stress conditions: Survival strategies. Lichenologist 39:83–89

    Google Scholar 

  • Mudd RG (2004) Significance of the epiphyte layer to stem water storage in native and invaded tropical montane cloud forests in Hawai'i. B.Sc. Thesis, Geography Department, University of Hawai'i at Manoa, Honolulu.

    Google Scholar 

  • Nadkarni NM, Solano R (2002) Potential effects of climate change on canopy communities in a tropical cloud forest: An experimental approach. Oecologia 131:580–586

    Google Scholar 

  • Nascimento HEM, Laurance WF (2004) Biomass dynamics in Amazonian forest fragments. Ecological Applications 14:S127–S138

    Google Scholar 

  • Norris DH (1987) Long-term results of cutting on the bryophytes of the Sequoia sempervirens forest in northern California. Symposia Biologica Hungarica 35:467–473

    Google Scholar 

  • Nöske NM et al (2008) Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic and Applied Ecology 9:4–12

    Google Scholar 

  • Nowak EJ, Martin CE (1995) Effect of elevated CO2 on nocturnal malate accumulation in the CAM species Tillandsia ionantha and Crassula arborescens. Photosynthetica 31:441–444

    CAS  Google Scholar 

  • Oberbauer SF, von Kleist K, Whelan KRT, Koptur S (1996) Effects of Hurricane Andrew on epiphyte communities within cypress domes of Everglades National park. Ecology 77:964–967

    Google Scholar 

  • Ong BL, Koh CK-K, Wee YC (1998) Effects of CO2 on growth and photosynthesis of Pyrrosia piloselloides (L.) price gametophytes. Photosynthetica 35:21–27

    Google Scholar 

  • Overpeck JT, Webb RS, Webb T (1992) Mapping Eastern North American vegetation change of the past 18 Ka – no-analogs and the future. Geology 20:1071–1074

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37:637–669

    Google Scholar 

  • Peres CA, Barlow J, Laurance WF (2006) Detecting anthropogenic disturbance in tropical forests. Trends in Ecology & Evolution 21:227–229

    Google Scholar 

  • Phillips OL et al (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    PubMed  CAS  Google Scholar 

  • Pierce S, Winter K, Griffiths H (2002) The role of CAM in high rainfall cloud forests: An in situ comparison of photosynthetic pathways in Bromeliaceae. Plant, Cell and Environment 25:1181–1189

    CAS  Google Scholar 

  • Pinheiro Da Costa D (1999) Epiphytic bryophyte diversity in primary and secondary lowland rainforests in southeastern Brazil. Bryologist 102:320–326

    Google Scholar 

  • Pócs T (1980) The epiphytic biomass and its effect on the water balance of two rain forest types in the Uluguru Mountains (Tanzania, East Africa). Acta Botanica Academiae Scientiarum Hungaricae 26:143–167

    Google Scholar 

  • Pócs T (1982) Tropical forest bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, New York, pp 59–104

    Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    CAS  Google Scholar 

  • Pypker TG, Unsworth MH, Bond BJ (2006) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Canadian Journal of Forest Research 36:832

    Google Scholar 

  • Richards PW (1984) The ecology of tropical forest bryophytes. In: Schuster RM (ed) New manual of bryology, vol 2. The Hattori Botanical Laboratory, Nichinan, pp 1233–1270

    Google Scholar 

  • Richardson BA, Rogers C, Richardson MJ (2000) Nutrients, diversity and community structure of two phytotelm systems in a lower montane forest, Puerto Rico. Ecological Entomology 25:348–356

    Google Scholar 

  • Richter A, Burrows JP, Nüß H, Granier C, Niemeier U (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437:129–132

    PubMed  CAS  Google Scholar 

  • Sala OE et al (2000) Biodiversity – global biodiversity scenarios for the year 2100. Science 287:1770–1774

    PubMed  CAS  Google Scholar 

  • Schofield WB (1992) Bryophyte distribution patterns. In: Bates JF, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 103–130

    Google Scholar 

  • Siebert SF (2002) From shade- to sun-grown perennial crops in Sulawesi, Indonesia: Implications for biodiversity conservation and soil fertility. Biodiversity and Conservation 11:1889–1902

    Google Scholar 

  • Sillett SC, McCune B, Peck JE, Rambo TR, Ruchty A (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecological Applications 10:789–799

    Google Scholar 

  • Slack NG (1976) Host specificity of bryophytic epiphytes in Eastern North America. Journal of the Hattori Botanical Laboratory 41:107–132

    Google Scholar 

  • Snäll T, Ehrlén J, Rydin H (2005) Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology 86:106–115

    Google Scholar 

  • Söderström L (1992) Invasions and range expansions and contractions of bryophytes. In: Bates JF, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 131–158

    Google Scholar 

  • Solomon S et al (eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Sporn SG, Bos MM, Gradstein SR (2007) Is productivity of cacao impeded by epiphytes? An experimental approach. Agriculture, Ecosystems and Environment 122:490–493

    Google Scholar 

  • Steffan-Dewenter I et al (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proceedings of the National Academy of Sciences of the United States of America 104:4973–4978

    PubMed  CAS  Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610

    CAS  Google Scholar 

  • Sveinbjörnsson B, Oechel WC (1992) Controls on growth and productivity of bryophytes: Environmental limitations under current and anticipated conditions. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 77–102

    Google Scholar 

  • Szczepaniak K, Biziuk M (2003) Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environmental Research 93:221–230

    PubMed  CAS  Google Scholar 

  • Tejedor A, McAlpin BW (2000) Ophioglossum pendulum L. naturalized in Miami, Dade County, Florida. American Fern Journal 90:46–47

    Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697

    CAS  Google Scholar 

  • Tuba Z, Proctor MCF, Takács Z (1999) Desiccation-tolerant plants under elevated air CO2: A review. Zeitschrift fur Naturforschung - – Section C Journal of Biosciences 54:788–796

    CAS  Google Scholar 

  • Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9–20

    CAS  Google Scholar 

  • Van Dobben HF, De Bakker AJ (1996) Re-mapping epiphytic lichen biodiversity in the Netherlands: Effects of decreasing SO2 and increasing NH3. Acta Botanica Neerlandica 45:55–71

    CAS  Google Scholar 

  • Van Dunne HJF, Wolf JHD (2001) Development of epiphytic bryophyte and lichen vegetation on plantation coffee trees. In: Van Dunne HJF (ed) Epiphytes in secondary tropical rain forests. Ph.D. Thesis, University of Amsterdam, pp 95–111

    Google Scholar 

  • van Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154

    Google Scholar 

  • Van Herk CM, Mathijssen-Spiekman EAM, De Zwart D (2003) Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35:347–359

    Google Scholar 

  • Vaz APA, Figueiredo-Ribeiro RDL, Kerbauy GB (2004) Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla, an epiphytic orchid. Plant Physiology and Biochemistry 42:411–415

    CAS  Google Scholar 

  • Veneklaas EJ, Zagt RJ, Van Leerdam A, Van Ek R, Broekhoven AJ, Van Genderen M (1990) Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89:183–192

    Google Scholar 

  • Walker MD et al (2006) Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103:1342–1346

    PubMed  CAS  Google Scholar 

  • Wannaz ED, Pignata ML (2006) Calibration of four species of Tillandsia as air pollution biomonitors. Journal of Atmospheric Chemistry 53:185–209

    CAS  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America 104:5738–5742

    PubMed  CAS  Google Scholar 

  • Williams-Linera G, Sosa V, Platas T (1995) The fate of epiphytic orchids after fragmentation of a Mexican cloud forest. Selbyana 16:36–40

    Google Scholar 

  • Williamson GB et al (2000) Amazonian tree mortality during the 1997 El Niño drought. Conservation Biology 14:1538–1542

    Google Scholar 

  • Winter K, Smith JAC (1996) An introduction to crassulacean acid metabolism: Biochemical principles and biological diversity. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin, pp 1–13

    Google Scholar 

  • Wolf JHD (1993) Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of The Missouri Botanical Garden 80:928–960

    Google Scholar 

  • Wolf JHD (1994) Factors controlling the distribution of vascular and non-vascular epiphytes in the northern Andes. Vegetatio 112:15–28

    Google Scholar 

  • Wolf JHD (2005) The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management 212:376–393

    Google Scholar 

  • Zotz G (1999) Altitudinal changes in diversity and abundance of non-vascular epiphytes in the tropics – an ecophysiological explanation. Selbyana 20:256–260

    Google Scholar 

  • Zotz G (2005) Vascular epiphytes in the temperate zones – a review. Plant Ecology 176:173–183

    Google Scholar 

  • Zotz G, Hietz P (2001) The ecophysiology of vascular epiphytes: Current knowledge, open questions. Journal of Experimental Botany 52:2067–2078

    PubMed  CAS  Google Scholar 

  • Zotz G, Schmidt G (2006) Population decline in the epiphytic orchid, Aspasia principissa. Biological Conservation 129:82–90

    Google Scholar 

  • Zotz G, Winter K (1994) Photosynthesis and carbon gain of the lichen, Leptogium azureum, in a lowland tropical forest. Flora 189:179–186

    Google Scholar 

  • Zotz G, Schultz S, Rottenberger S (2003) Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora 198:71–77

    Google Scholar 

  • Zotz G, Laube S, Schmidt G (2005) Long-term population dynamics of the epiphytic bromeliad, Werauhia sanguinolenta. Ecography 28:806–814

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zotz .

Editor information

Ulrich Lüttge Wolfram Beyschlag Burkhard Büdel Dennis Francis

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zotz, G., Bader, M.Y. (2009). Epiphytic Plants in a Changing World-Global: Change Effects on Vascular and Non-Vascular Epiphytes. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany. Progress in Botany, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68421-3_7

Download citation

Publish with us

Policies and ethics