Skip to main content

Abstract

This chapter reviews a number of techniques developed to overcome the well– known non–uniqueness difficulty in the boundary element method for acoustic radiation and scattering in an exterior domain. The non–uniqueness difficulty occurs at a set of irregular frequencies associated with the eigenfrequencies of the corresponding interior problem. The chapter focuses on the comparison of two commonly used techniques, the CHIEF method and the Burton and Miller method, along with their variations. After briefly revisiting the example of the pulsating sphere, a cat’s eye radiation problem is used as a test case for evaluating the effectiveness of different techniques. Numerical results confirm that the Burton and Miller method is a very reliable technique at all frequencies, while the CHIEF method is effective only at low frequencies. One potential drawback of Burton and Miller method is the requirement of the C 1 continuity condition at collocation points, which may rule out the use of any C 0 continuous elements. Modified versions of the Burton and Miller method, which compute the normal–derivative integral equation only at the center of each C 0 element, have been proposed in the past to partially alleviate the strict C 1 requirement. It is still uncertain that any of these modified versions is as theoretically robust as the original Burton and Miller method. Nonetheless, the cat’s eye radiation test case demonstrates that a modified version that uses 9–node quadrilateral elements is as effective as the original Burton and Miller method in practical use. The paper is completed by applying the Burton and Miller method to the industrial problem of a radiating diesel engine for which the radiated sound power is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amini S (1990) On the choice of the coupling parameter in boundary integral formulations of the exterior acoustics problem. Applicable Analysis 35:75–92

    Article  MATH  MathSciNet  Google Scholar 

  2. Amini S, Maines ND (1998) Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation. International Journal for Numerical Methods in Engineering 41:875–898

    Article  MATH  MathSciNet  Google Scholar 

  3. Brakhage H, Werner P (1965) Über das Dirichlet’sche Außenraumproblem für die Helmholtz’sche Schwingungsgleichung. Archiv der Mathematik 16:325–329

    Article  MATH  MathSciNet  Google Scholar 

  4. Burton AJ, Miller GF (1971) The application of integral equation methods to the numerical solution of some exterior boundary–value problems. Proceedings of the Royal Society of London 323:201–220

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Chien CC, Rajiyah H, Atluri SN (1990) An effective method for solving the hypersingular integral equations in 3–d acoustics. Journal of the Acoustical Society of America 88:918–937

    Article  ADS  MathSciNet  Google Scholar 

  6. Ciskowski RD, Brebbia CA (eds) (1991) Boundary elements in acoustics. Computational Mechanics Publications and Elsevier Applied Science, Southampton–Boston

    Google Scholar 

  7. Cremers L, Fyfe KR, Sas P (2000) A variable order infinite element for multi–domain boundary element modelling of acoustic radiation and scattering. Applied Acoustics 59:185–220

    Article  Google Scholar 

  8. Cunefare KA, Koopmann GH, Brod K (1989) A boundary element method for acoustic radiation valid for all wavenumbers. Journal of the Acoustical Society of America 85:39–48

    Article  ADS  Google Scholar 

  9. Estorff O von (ed) (2000) Boundary elements in acoustics: Advances and applications. WIT Press, Southampton

    MATH  Google Scholar 

  10. Francis DTI (1993) A gradient formulation of the Helmholtz integral equation for acoustic radiation and scattering. Journal of the Acoustical Society of America 93:1700–1709

    Article  ADS  Google Scholar 

  11. Hahn SR, Ferri AA, Ginsberg JH (1991) A review and evaluation of methods to alleviate non-uniqueness in the surface Helmholtz integral equation. In: Keltie RF, Seybert AF, Kang DS, Olson L, Pinsky PM (eds) Structural Acoustics. Winter Annual Meeting Symposium Proceedings of ASME. NCA–Vol 12/AMD–Vol 128:223–234

    Google Scholar 

  12. Harris PJ, Amini S (1992) On the Burton and Miller boundary integral formulation of the exterior acoustic problem. ASME Journal of Vibration and Acoustics 114:540–546

    Article  Google Scholar 

  13. Ingber MS, Hickox CE (1992) A modified Burton–Miller algorithm for treating the uniqueness of representation problem for exterior acoustic radiation and scattering problems. Engineering Analysis with Boundary Elements 9:323–329

    Article  Google Scholar 

  14. Jia ZH, Wu TW, Seybert AF (1992) Simplified hypersingular boundary integral equations for acoustic scattering and radiation. In: Lee D (ed) Proceedings of the 3rd IMACS Symposium on Computational Acoustics. North–Holland

    Google Scholar 

  15. Jones DS (1974) Integral equations for the exterior acoustic problem. Quarterly Journal of Mechanics and Applied Mathematics 27:129–142

    Article  MATH  MathSciNet  Google Scholar 

  16. Juhl P (1994) A numerical study of the coefficient matrix of the boundary element method near characteristic frequencies. Journal of Sound and Vibration 175:39–50

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Juhl P (1998) A note on the convergence of the direct collocation boundary element method. Journal of Sound and Vibration 212:703–719

    Article  ADS  Google Scholar 

  18. Kirkup SM (1998) The boundary element method in acoustics. Integrated Sound Software, Heptonstall

    Google Scholar 

  19. Koopmann GH, Fahnline JB (1997) Designing quiet structures: A sound power minimization approach. Academic Press, San Diego–London

    Google Scholar 

  20. Kupradze VD (1956) Boundary value problems in vibrational theory and integral equations. Deutscher Verlag der Wissenschaften, Berlin (1st Russian edition 1950)

    Google Scholar 

  21. Kussmaul R (1969) Ein numerisches Verfahren zur Lösung des Neumannschen Außenraumproblems für die Helmholtzsche Schwingungsgleichung. Computing 4:246–273

    Article  MATH  MathSciNet  Google Scholar 

  22. Makarov SN, Ochmann M (1998) An iterative solver for the Helmholtz integral equation for high frequency scattering. Journal of the Acoustical Society of America 103:742–750

    Article  ADS  Google Scholar 

  23. Marburg S (2002) Six elements per wavelength. Is that enough? Journal of Computational Acoustics 10:25–51

    Article  Google Scholar 

  24. Marburg S, Amini S (2005) Cat’s eye radiation with boundary elements: Comparative study on treatment of irregular frequencies. Journal of Computational Acoustics 13:21–45

    Article  MATH  Google Scholar 

  25. Marburg S, Schneider S (2003) Influence of element types on numeric error for acoustic boundary elements. Journal of Computational Acoustics 11:363–386

    Article  Google Scholar 

  26. Marburg S, Schneider S (2003) Performance of iterative solvers for acoustic problems. Part I: Solvers and effect of diagonal preconditioning. Engineering Analysis with Boundary Elements 27:727–750

    Article  MATH  Google Scholar 

  27. Meyer WL, Bell WA, Zinn BT, Stallybrass MP (1978) Boundary integral solutions of three dimensional acoustic radiation problems. Journal of Sound and Vibration 59:245–262

    Article  MATH  ADS  Google Scholar 

  28. Ochmann M, Mechel FP (2002) Analytical and numerical methods in acoustics. In: Mechel FP (ed) Formulas of Acoustics. Chapter O. Springer–Verlag, Berlin Heidelberg 930–1023

    Google Scholar 

  29. Panič OI (1965) K voprosu o razrešimosti vnešnich kraevich zadač dlja volnovogo uravnenija i dlja sistemi uravnenij MAXWELLa. Uspechi Mathematičkich Nauk 20:221–226

    MATH  Google Scholar 

  30. Rego Silva JJ (1993) Acoustic and elastic wave scattering using boundary elements. Computational Mechanics Publications, Southampton–Boston

    Google Scholar 

  31. Rosen EM, Canning FX, Couchman LS (1995) A sparse integral equation method for acoustic scattering. Journal of the Acoustical Society of America 98:599–610

    Article  ADS  Google Scholar 

  32. Saad Y, Schultz MH (1986) GMRES: A generalized minimal residual algorithm for solving non–symmetric linear systems. SIAM Journal of Scientific and Statistical Computing 7:856–869

    Article  MATH  MathSciNet  Google Scholar 

  33. Schenck HA (1968) Improved integral formulation for acoustic radiation problems. Journal of the Acoustical Society of America 44:41–58

    Article  ADS  Google Scholar 

  34. Schneider S (2003) Application of fast methods for acoustic scattering and radiation problems. Journal of Computational Acoustics 11:387–401

    Article  Google Scholar 

  35. Schneider S, Marburg S (2003) Performance of iterative solvers for acoustic problems. Part II: Acceleration by ilu–type preconditioner. Engineering Analysis with Boundary Elements 27:751–757,

    Article  MATH  Google Scholar 

  36. Segalman DJ, Lobitz DW (1990) SuperCHIEF: A modified CHIEF method. Sandia National Laboratories Report, SAND90-1266, Albuquerque

    Google Scholar 

  37. Segalman DJ, Lobitz DW (1992) A method to overcome computational difficulties in the exterior acoustic problem. Journal of the Acoustical Society of America 91:1855-1861

    Article  ADS  Google Scholar 

  38. Seybert AF, Rengarian, TK (1987) The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equation. Journal of the Acoustical Society of America 81:1299–1306

    Article  ADS  Google Scholar 

  39. Seybert AF, Soenarko B, Rizzo FJ, Shippy FJ (1985) An advanced computational method for radiation and scattering of acoustic waves in three dimensions. Journal of the Acoustical Society of America 77:362–368

    Article  MATH  ADS  Google Scholar 

  40. Tobocman W (1986) Extensions of the Helmholtz integral equation method to shorter wavelengths. Journal of the Acoustical Society of America 80:1828–1837

    Article  ADS  Google Scholar 

  41. Ursell F (1973) On the exterior problems of acoustic. Proceedings of Cambridge Philosophers Society 74:117–125

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Visser R (2004) A boundary element approach to acoustic radiation and source identification. PhD Thesis, University of Twente, Enschede

    Google Scholar 

  43. Weyl H (1952) Kapazität von Strahlungsfeldern. Mathematische Zeitschrift 55:187–198

    Article  MathSciNet  Google Scholar 

  44. Wu TW (1995) A direct boundary element method for acoustic radiation and scattering from regular and thin bodies. Journal of the Acoustical Society of America 97:84–91

    Article  ADS  Google Scholar 

  45. Wu TW (ed) (2000) Boundary element acoustics: Fundamentals and computer codes. WIT Press, Southampton

    MATH  Google Scholar 

  46. Wu TW (1994) On computational aspects of the boundary element method for acoustic radiation and scattering in a perfect waveguide. Journal of the Acoustical Society of America 96:3733–3743

    Article  ADS  Google Scholar 

  47. Wu TW (2000) The Helmholtz integral equation. Chapter 2 of [45] 9–28

    Google Scholar 

  48. Wu TW (2000) Two–dimensional Problems. Chapter 3 of [45] 29–49

    Google Scholar 

  49. Wu TW, Jia ZH (1992) A choice of practical approaches to overcome the nonuniqueness problem of the BEM in acoustic radiation and acattering. Boundary Element Technology VII, Ed CA Brebbia, MS Ingber, Computational Mechanics Publications, 501–510

    Google Scholar 

  50. Wu TW, Li WL, Seybert AF (1993) An efficient boundary element algorithm for multi–frequency acoustical analysis. Journal of the Acoustical Society of America 94:447–452

    Article  ADS  MathSciNet  Google Scholar 

  51. Wu TW, Seybert AF (1991) Acoustic radiation and scattering. Chapter 3 of [6] 61–76

    Google Scholar 

  52. Wu TW, Seybert AF (1991) A weighted residual formulation for the CHIEF method in acoustics. Journal of the Acoustical Society of America 90:1608–1614

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marburg, S., Wu, T. (2008). Treating the Phenomenon of Irregular Frequencies. In: Marburg, S., Nolte, B. (eds) Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77448-8_16

Download citation

Publish with us

Policies and ethics