Skip to main content

Imaging with Secondary and Backscattered Electrons

  • Chapter
Scanning Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

Abstract

The most important topographic contrast mode with secondary electrons is caused by the dependence of the SE yield on the local tilt of the specimen surface. A fraction of the SE signal is excited by the primary electron probe and carries high-resolution information due to the small exit depth of the SE. Another fraction of poorer resolution is excited by the BSE. If, instead of using the conventional SE detector, the SE are sorted according to their exit momenta, a more quantitative interpretation of the topography may be possible. The SE are also affected by local magnetic and electrostatic fields, which create type-1 magnetic and voltage contrast, respectively. By employing pre-acceleration and a spectrometer the voltage contrast can be used to make a quantitative measurement of the surface bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Drescher, L. Reimer, H. Seidel: Rückstreukoeffizient und Sekundärelektronen-Ausbeute von 10–100 keV Elektronen und Beziehungen zur Raster-Elektronenmikroskopie. Z.angew.Phys. 29, 331 (1970)

    Google Scholar 

  2. T. Nagantini, A. Okura: Enhanced secondary electron detection at small working distance in the field emission SEM. SEM 1977/I, p.695 H. Koike, K. Ueno, M. Suzuki: Scanning device combined with conventional electron microscope. Proc. EMSA 1971 (Claytor’s Publ.Div., Baton Rouge) p.28

    Google Scholar 

  3. J. Jackman: New SEM depends on multifunction-detector. Ind.Res. and Developm. Jan. 1980, ISSN 0160–4074, p. 115

    Google Scholar 

  4. M. Lange, L. Reimer, C. Tollkamp: Testing of detector strategies in SEM by isodensities. J.Micr. 134, 1 (1984)

    Article  Google Scholar 

  5. D.K. Hindermann, R.H. Davis: SEM techniques for the examination of blind and through holes. SEM 1974, p. 183

    Google Scholar 

  6. A.E. Lukianov, G.V. Spivak, E.I. Rau, D.D. Gorodsky: The secondary electron SEM-collector with magnetic field. In Electron Microscopy 1922 ( Inst. of Physics, London 1972 ) p. 186

    Google Scholar 

  7. K. Schur, C. Schulte, L. Reimer: Auflösungsvermögen und Kontrast von Oberflächenstufen bei der Abbildung mit einem Raster-Elektronen-mikroskop. Z.anoew.Phys. 23, 405 (1967)

    Google Scholar 

  8. G. Pfefferkorn, R. Blaschke: Der Informationsgehalt rasterelektronenmikroskopischer Aufnahmen. BEDO 1, 1 (1968)

    Google Scholar 

  9. L. Reimer, M. Riepenhausen, C. Tollkamp: Detector strategy for improvement of image contrast analogous to light illumination. Scanning 6, 155 (1984)

    Article  Google Scholar 

  10. K. Fecher: Untersuchung dünner Schichten. BEDO 4/2, 399 (1971)

    Google Scholar 

  11. H. Soezima. Solid surface observation at very low acceleration voltage (200V - 1 kV) by SEM. Surf.Sci. 86, 610 (1979)

    Article  ADS  Google Scholar 

  12. C. Le Gressus, H. Okuzumi, D. Massignon: Changes of SEI brightness under electron irradiation as studied by electron spectroscopy. SEM 1981/I, p.251

    Google Scholar 

  13. O.Lee-Deacon, C. Le Gressus, D. Massignon: Analytical SEM for surface science. In Electron Beam Interaction with Solids, ed. by D.F. Kyser ( SEM Inc., AMF O’Hare 1982 ) p. 271

    Google Scholar 

  14. L. Reimer: Electron signal and detector strategy. In Electron Beam Interactions with Solids,ed. by D.F. Kyser et al. (SEM Inc., AMF O’Hare 1982), D.299

    Google Scholar 

  15. L. Reimer: SEM of surfaces. In Electron Microscopy 2982, Vol. 1 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 79

    Google Scholar 

  16. L. Reimer, B. Volbert: Detector system for backscattered electrons by conversion to secondary electrons. Scanning 2, 283 (1979)

    Google Scholar 

  17. K.R. Peters: Conditions required for high quality high magnification images in secondary electron-I SEM. SEM 1982/1V, p. 1359

    Google Scholar 

  18. J.R. Banbury, W.C. Nixon: A high-contrast directional detector for the SEM. J.Phys. E 2, 1055 (1969)

    Google Scholar 

  19. B. Volbert, L. Reimer: Advantages of two opposite Everhart-Thornley detectors in SEM. SEM 1980/IV, p.1

    Google Scholar 

  20. L. Reimer, C. Tollkamp: Recording of topography by secondary electrons with a two-detector system. In Electron Microscopy 1982, Vol. 2 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 543

    Google Scholar 

  21. B. Volbert: True surface topography: the need for signal mixing. In Electron Microscopy 1982, Vol. 1 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 233

    Google Scholar 

  22. F. Hasselbach, U. Rieke, M. Straub: An imaging secondary electron detector for the SEM. SEM 1983/11, p.647

    Google Scholar 

  23. R. Blaschke, A. Boyde: Particle size in conductive coating and reslution in the SEM. Scanning 1, 64 (1978)

    Google Scholar 

  24. P. Echlin, G. Kaye: Thin films for high resolution conventional SEM. SEM 1979/11, p.21

    Google Scholar 

  25. J.D. Geller, T. Yoshioka, D.A. Hurd: Coating by ion sputtering deposition for ultrahigh resolution SEM. SEM 1979/II, p.355

    Google Scholar 

  26. K.R. Peters: SEM at macromolecular resolution in low energy mode on biological specimens coated with ultra thin metal films. SEM 1979/I1, p.133

    Google Scholar 

  27. L. Reimer, W. Pöpper, W. Bröcker: Experiments with a small solid angle detector for BSE. SEM 1978/I, p.705

    Google Scholar 

  28. C. Wells: Effect of collector position on type-2 magnetic contrast in the SEM. SEM 1978/I, p.293

    Google Scholar 

  29. C. Wells: Effects of collector take-off angle and energy filter- ina on the BSE image in the SEM. Scanning 2, 199 (1979)

    Article  Google Scholar 

  30. V.N.E. Robinson: Imaging with backscattered electrons in a SEM. Scanning 3, 15 (1980)

    Article  Google Scholar 

  31. E.D. Wolf, T.E. Everhart: Annular diode detector for high angular resolution pseudo-Kikuchi patterns. SEM 1969, p. 41

    Google Scholar 

  32. J.Stephen, B.J. Smith, D.C: Marshall, E.M. Wittam: Application of a semiconductor backscattered electron detector in a SEM. J.Phys. E 8, 607 (1975)

    Google Scholar 

  33. P.S.D. Lin, R.P. Becker: Detection of backscattered electrons with high resolution. SEM 1975, p. 61

    Google Scholar 

  34. J.L. Abraham, P.B. DeNee: Biomedical applications of backscattered electron imaging - one year’s experience with SEM histochemistry. SEM 1974, p. 251

    Google Scholar 

  35. R. ChristenhuB: Zur Darstellbarkeit kristalliner Objekte in der Auflicht-Elektronenmikroskopie. BEDO 1, 67 (1968)

    Google Scholar 

  36. D.C. Joy, D.E. Newbury, P.M. Hazzledine: Anomalous crystallographic contrast on rolled and annealed specimens. SEM 1972, p. 97

    Google Scholar 

  37. P.F. Schmidt, H.G. Grewe, G. Pfefferkorn: SEM imaging of the cell structure of dislocation networks in cold worked Cu single crystals. Scanning 1, 174 (1978)

    Article  Google Scholar 

  38. H. Seiler: Determination of the “information depth” in the SEM. SEM 1976/I, p.9

    Google Scholar 

  39. L. Reimer, H.G. Badde, H. Seidel: Orientierungsanisotropie des Rückstreukoeffizienten und der Sekundärelektronenausbeute von 10–100 keV Elektronen. Z.angew.Phys. 31, 145 (1971)

    Google Scholar 

  40. S. Kimoto, H. Hashimoto: Stereoscopic observation in SEM using multiple detectors. In The Electron Microprobe,ed. by T.D. McKinley et al. (Wiley, New York 1966) o.480

    Google Scholar 

  41. L. Reimer, B. Volbert: The origin and correction of SEM imaging artifacts arising from the use of the difference signal of two detectors. Philips Electron Optics Bulletin, No. 118 (1982)

    Google Scholar 

  42. J. Lebiedzik, E.W. White: Multiple detector method for quantitative determination of microtopography in the SEM. SEM 1975, p. 181

    Google Scholar 

  43. J. Lebiedzik, J. Lebiedzik, R. Edwards, B. Phillips: Use of microtopography capability in the SEM for analysing fracture surfaces. SEM 1979/II, p.61; J. Lebiedzik: An automatic topographical surface reconstruction in the SEM. Scanning 2, 230 (1979)

    Google Scholar 

  44. J. Jackman: New SEM depends on multifunction-detector. Ind.Res.and Developm., Jan. 1980, p. 115

    Google Scholar 

  45. M.D. Ball, D.G. McMartney: The measurement of atomic number end composition in an SEM using backscattered electron detectors. J.Micr. 124, 57 (1981)

    Article  Google Scholar 

  46. H. Niedrig: Backscattered electrons as a tool for film thickness determination. SEM 1978/I, p.841

    Google Scholar 

  47. O.C. Wells, R.J. Savoy, P.J. Bailey: Backscattered electron imaging in the SEM - measurement of surface layer mass-thickness. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 287

    Google Scholar 

  48. P.B. DeNee: Measurement of mass and thickness of respirable size dust particles by SEM backscattered electron imaging. SEM 1978/I, p.741

    Google Scholar 

  49. A. Boyde: Photogrammetry of stereopair SEM images using separate measurements from the two images. SEM 1974, p. 101

    Google Scholar 

  50. A.R. Walker, G.R. Booker: A simple energy filtering backscattered electron detector. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ), p. 119

    Google Scholar 

  51. O.C. Wells: Low-loss image for surface SEM. Appl.Phys.Letters 19, 232 (1971)

    Article  ADS  Google Scholar 

  52. P. Morin, M. Pitaval, D. Besnard, G. Fontaine: Electron-channelling imaging in SEM. Phil.Mag. A 40, 511 (1979)

    Google Scholar 

  53. O.C. Wells, A.N. Broers, C.G. Bremer: Method for examininn solid specimens with improved resolution in the SEM. Aopl.Phys.Lett. 23, 353 (1973)

    Article  ADS  Google Scholar 

  54. C. Wells: Explanation of the low-loss image in the SEM in terms of electron scattering theory. SEM 1972, p. 169

    Google Scholar 

  55. J.P. Spencer, C.J. Humphreys, P.B. Hirsch: A dynamical theory for the contrast of perfect and imperfect crystals in the SEM using backscattered electrons. Phil. Mag. 26, 193 (1972)

    Article  ADS  Google Scholar 

  56. R.M. Stern, I. Ichinokawa, S. Takashima, H. Hashimoto, S. Kimoto: Dislocation images in the high resolution SEM. Phil.Mag. 26, 1495 (1972)

    Article  ADS  Google Scholar 

  57. G.R. Booker, D.C. Joy, J.P. Spencer, C.J. Humphreys: Imaging of crystal defects in the SEM. SEM 1973, p. 251

    Google Scholar 

  58. P. Morin, M. Pitaval, E. Vicario, G. Fontaine: SEM observation of single defects in solid crystalline materials. Scanning 2, 217 (1979)

    Article  Google Scholar 

  59. O.C. Wells: Backscattered electron image in the SEM. SEM 1977/I p.747

    Google Scholar 

  60. D.E. Newbury: The utility of specimen current imaging in the SEM. SEM 1976/I, p.111

    Google Scholar 

  61. J.R. Dorsey: Scanning electron probe measurements of magnetic fields. In Electron Probe Microanalysis, ed. by A.J. Tousimis and L. Marton: Adv. Electr.Electron Physics Supol. 6 ( Academic, New York 1969 ) p. 291

    Google Scholar 

  62. D.C. Joy, J.P. Jakubovics: Direct observation of magnetic domains by SEM. Phil.Mag 17, 61 (1968); J. Phys. D 2, 1367 (1969)

    Google Scholar 

  63. G.W. Kammlott: Observation of ferromagnetic domains with the SEM. J.Appl.Phys. 42, 5156 (1971)

    Article  ADS  Google Scholar 

  64. J.R. Banbury, W.C. Nixon: The direct observation of magnetic domain structure and magnetic fields in the SEM. J.Sci.Instr. 44, 889 (1967)

    Article  ADS  Google Scholar 

  65. G.A. Jones: On the quality of type 1 magnetic contrast obtained in the SEM. Phys.stat.sol.(a) 36, 647 (1976)

    Article  ADS  Google Scholar 

  66. P. Gentsch, L. Reimer: Messungen zum magnetischen Kontrast im Rasterelektronenmikroskop. BEDO 5, 299 (1972)

    Google Scholar 

  67. G.A. Wardly: Magnetic contrast in the SEM. J.Appl.Phys. 42, 376 (1971)

    Article  ADS  Google Scholar 

  68. T. Yamamoto, K. Tsuno: Magnetic contrast in secondary electron images of uniaxial ferromagnetic materials obtained by SEM. Phys.stat.sol.(a) 28, 479 (1975)

    Article  ADS  Google Scholar 

  69. J. Philibert, R. Tixier: Effects of crystal contrast in SEM. Micron 1, 174 (1969)

    Google Scholar 

  70. D.J. Fathers, J.P. Jacubovics, D.C. Joy, D.E. Newbury, H. Yakowitz: A new method of observing magnetic domains by SEM. Phys.stat.sol. (a) 20, 535 (1973); 22, 609 (1974)

    Google Scholar 

  71. D.E. Newbury, H. Yakowitz, H.L. Myklebust: Monte Carlo calculations of magnetic contrast from cubic materials in the SEM. Appl.Phys. Lett. 23, 488 (1973)

    Google Scholar 

  72. T. Yamamoto, H. Nishizawa, K.Tsuno: Magnetic domain contrast in backscattered electron images obtained with a SEM. Phil.Mag. 34, 311 (1976)

    Article  ADS  Google Scholar 

  73. K. Tsuno, T. Yamamoto: Observed depths of magnetic domains in high-voltage SEM. Phys.stat.sol.(a) 35, 437 (1976)

    Article  ADS  Google Scholar 

  74. P.J. Grundy, R.S. Tebble: Lorentz electron microscopy. Adv.Physics 17, 153 (1968)

    Article  ADS  Google Scholar 

  75. J.N. Chapman, E.M. Waddell, P.E. Batson, R.P. Ferrier: The Fresnel mode of Lorentz microscopy using a TEM. Ultramicroscopy 4, 283 (1979)

    Article  Google Scholar 

  76. L. Marton, S. Lachenbruch: Electron optical mapping of electromagnetic fields. J.Appl.Phys. 20, 1171 (1949)

    Article  ADS  Google Scholar 

  77. Ch. Schwink: Ober neue quantitative Verfahren der elektronenoptischen Schattenmethode. Optik 12, 481 (1955)

    Google Scholar 

  78. R.F.M. Thornley, J.D. Hutchinson: Magnetic field measurements in the SEM. Appl.Phys.Letters 13, 249 (1968)

    Article  ADS  Google Scholar 

  79. T. Ishiba, H. Suzuki: Measurements of magnetic field of magnetic recording head by a SEM. Jap.J.Appl.Phys. 13, 457 (1974)

    Article  ADS  Google Scholar 

  80. M.D. Coutts, E.R. Levin: Examination of local magnetic fields by SEM. In Microscopic Electronique 1970, Vol. 1, ed. by P. Favard ( Soc.Française Micr.Electronique, Paris 1970 ) p. 261

    Google Scholar 

  81. E.I. Rau, G.V. Spivak: SEM of two-dimensional magnetic stray fields. Scanning 3, 27 (1980)

    Article  Google Scholar 

  82. S. Kimoto, H. Hashimoto, K. Mase: Voltage contrast in SEM. In Electron Microscopy 1968, Vol. 1, ed. by D.S. Bocciarelli ( Tipoorafia Poliglotta Vaticana, Rome 1968 ) p. 83

    Google Scholar 

  83. J.R. Banbury, W.C. Nixon: Voltage measurement in the SEM. SEM 1970, p. 743

    Google Scholar 

  84. H. Yakowitz, J.P. Ballantyne, E. Munro, W.C. Nixon: The cylindrical secondary electron detector as a voltage measuring device in the SEM. SEM 1972, p. 33

    Google Scholar 

  85. N.C. MacDonald: Auger electron spectroscopy in SEM: potential measurements. Appl. Phys. Lett. 16, 76 (1970)

    Article  ADS  Google Scholar 

  86. W.R. Hardy, S.K. Begera, D. Cavan: A voltage contrast detector for the SEM. J.Phys.E 8, 789 (1975)

    Article  ADS  Google Scholar 

  87. E. Menzel, E. Kubalek: Secondary electron detection systems for quantitative voltage measurements. Scanning 5, 151 (1983)

    Article  Google Scholar 

  88. A.P. Janssen, P. Akhther, C.J. Harland, J.A. Venables: High spatial resolution surface potential measurements using secondary electrons. Surf.Sci. 93, 453 (1980)

    Article  ADS  Google Scholar 

  89. A. Gopinath, C.C. Sanger: A technique for the linearization of voltage contrast in the SEM. J.Phys. E 4, 334 (1971)

    Google Scholar 

  90. A. Khursheed, A.R. Dinnis: A comparison of voltage contrast detectors. Scanning 6, 85 (1984)

    Article  Google Scholar 

  91. A. Gopinath: Estimate of minimum measurable voltage in the SEM. J.Phys. E 10, 911 (1977)

    Google Scholar 

  92. E. Menzel, E. Kubalek: Fundamentals of electron beam testing of integrated circuits. Scanning 5, 103 (1983)

    Article  Google Scholar 

  93. Y. Petit-Clerc, J.D.C. Arette: Effect of temperature on surface charges caused by an incident electron beam on a metallic surface. Appl. Phys. Lett. 12, 227 (1968)

    Article  ADS  Google Scholar 

  94. D.M. Taylor: The effect of passivation on the observation of voltage contrast in the SEM. J.Phys. D 11, 2443 (1978)

    Google Scholar 

  95. G.V. Lukianoff, T.R. Touw: Voltare coding: temporal versus spatial frequencies. SEM 1975, p. 465

    Google Scholar 

  96. E. Menzel, E. Kubalek: Electron beam test techniques for integrated circuits. SEM 1981/I, p.305

    Google Scholar 

  97. E. Wolfgang: Electron beam testing: problems in practice. Scanning 5, 71 (1983)

    Article  Google Scholar 

  98. G.Y. Robinson, R.M. White: SEM of ferroelectric domains in barium titanate. Appl.Phys.Lett. 10, 320 (1967)

    Article  ADS  Google Scholar 

  99. D.G. Coates, N. Shaw: Direct observation of ferroelectric domains in triglycine sulfate using the SEM. In Microscopie Electronique 1970, Vol. 1, ed. by P. Favard ( Soc.Française Micr.Electronique, Paris 1970 ) p. 259

    Google Scholar 

  100. R. Le Bihan, M. Maussion: Observation des domaines ferroélectriques au microscope électronique à balayage. Rev.Phys.Appl. 9, 427 (1974) 6.101 R. Le Bihan, M. Maussion: Study of the surface of ferroelectric crystals with the SEM. Ferroelectrics 7, 307 (1974)

    Google Scholar 

  101. M. Maussion, R. Le Bihan: Study of ferroelectric domains on KD2PO4 and BaTiO3 crystals with the SEM. Ferroelectrics 13,465 (1976) 6.103 Y. Uchikawa, S. Ikeda: Application of SEM to analysis of surface domain structure of ferroelectrics. SEM 1981/I, p.209

    Google Scholar 

  102. H. Bahadur, R. Parshad: SEM of vibrating quartz crystals - a review. SEM 1980/I, p.509

    Google Scholar 

  103. H.P. Feuerbaum, G. Eberharter, G. Tobolka: Visualization of travelling surface acoustic waves using a SEM. SEM 1980/I, p.503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1985). Imaging with Secondary and Backscattered Electrons. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13562-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13562-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13564-8

  • Online ISBN: 978-3-662-13562-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics