Skip to main content

How Spatial Information Contributes to the Conservation and Management of Biodiversity

  • Chapter
Spatial Complexity, Informatics, and Wildlife Conservation

Abstract

Reliable ecological information is a necessary component of sustainable management practices (Walters 1986). Land managers need to understand the spatial distribution and population status of species and habitats in regional landscapes. The Millennium Assessment, a global assessment of human well-being, identified biodiversity as a crucial ecosystem service that increases the capacity of ecosystems to adapt to environmental change and maintain productivity (http://www.millenniumassessment. org/en/index.aspx). Biodiversity is widely defined as the variety of compositional, structural, and functional biological components available across multiple scales including landscapes, ecosystems, species, and genetics (Noss 2001). As biodiversity occurs at a multitude of scales, species conservation and sustainable management requires that planning also occur at these scales. Planning for biodiversity conservation is critical because regional landscapes are increasingly compromised by global anthropogenic influences (Vitousek et al. 1997). More than 75% of habitable, ice-free land is already altered by human residence and land-use (Ellis and Ramankutty 2008; Usher et al. 2005; Vitousek et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alidina HM, Fisher D, Stienback C, Ferdana Z, Lombana A, Huettmann F (2008) Assessing and managing data. In: Ardron J, Possingham H, Klein C (eds) Marxan good practices handbook. Vancouver, Canada http://www.pacmara.org/

  • Austin MP, Heyligers PC (1989) Vegetation survey design for conservation: gradsect sampling of forests in north-eastern New South Wales. Biol Conserv 50:13–32

    Article  Google Scholar 

  • Bella D, Li H, et al (1992) Ecological indicators of global climate change: proceeding of a US Fish and Wildlife Service global climate change workshop held at Oregon State University, Corvallis, Oregon 13–15 November 1990

    Google Scholar 

  • Berry KH (1986) Introduction: development, testing, and application of wildlife-habitat models. In: Verner J, Morrison ML, Ralph CJ Wildlife 2000: modeling habiat relationships of terrestrial vertebrates. The University of Wisconsin Press, Madison, WI

    Google Scholar 

  • Bowser ML, Morton JM (2009) Modeling terrestrial arthropod diversity on the Kenai National Wildlife Refuge. In: McWilliams W, Moisen G, Czaplewski R Forest inventory and analysis (FIA) Symposium, 21–23 October 2008, Park City, UT. Proc RMRS-P-56CD USDA Forest Service, Rocky Mountain Research Station

    Google Scholar 

  • Boyce MS, McDonald LL (1999) Relating populations to habitats using resouce selection functions. Trends Ecol Evol 14:268–272

    Article  PubMed  Google Scholar 

  • Breiman L (2001) Statistical modeling: the two cultures. Stat Sci 16:199–231

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Busby JR (1991) BIOCLIM — a bioclimatic analysis and prediction system. In: Austin MP, Margules CR Conservation: cost effective biological surveys and data analysis. CISIRO, Melbourne, Australia

    Google Scholar 

  • Canhos VP, Souza S, et al (2004) Global biodiversity informatics: setting the scene for a “new world” of ecological modeling. Biodiver Inform 1:1–13

    Google Scholar 

  • Chapin FS III, Peterson G, et al (2004) Resilience and vulnerability of northern regions to social and environmental change. Ambio 33:344–349

    PubMed  Google Scholar 

  • Chapman AD, Busby JR (1994) Linking plant species information to continental bidoversity inventory, climate and environmental monitoring. In: Miller RI Mapping the diversity of nature. Chapman & Hall, London

    Google Scholar 

  • Chapman AD, Wieczorek J (2006) Guide to best practices for georeferencing. Copenhagen: Global Biodiversity Information Facility

    Google Scholar 

  • Csuti B, Crist P (2000) Methods for developing terrestrial vertebrate distribution maps for gap analysis. In: Scott JM, Jennings MD A handbook for gap analysis. Version 2.0 Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho. Moscow

    Google Scholar 

  • Cutler DR, Edwards TC Jr, et al (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  PubMed  Google Scholar 

  • Droege S, Cyr A, et al (1998) Checklists: and under-used tool for the inventory and monitoring of plants and animals. Conserv Biol 12:1134–1138

    Article  Google Scholar 

  • Edwards TC Jr, Cutler DR, Zimmermann NE, Geiser L, Moisen GG (2006) Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecological Modelling 199:132–141

    Article  Google Scholar 

  • Elith J, Graham CH, et al (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Ellis EC, Ramankutty V (2008) Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecol Environ 6:439–447

    Article  Google Scholar 

  • Franklin SE (2001) Remote sensing for sustainable forest management. Lewis, Boca Raton, FL

    Google Scholar 

  • GAO (2007) Climate change: agencies should develop guidance for addressing the effects on federal land and water resources. US Government Accountability Office Report to Congressional Requesters

    Google Scholar 

  • Graham CH, Ferrier S, Huettmann F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  • Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biol Conserv 116:195–203

    Google Scholar 

  • Hirzel AH, Hausser J, et al (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  • Hochachka WM, Caruana R, et al (2007) Data-mining discovery of pattern and process in ecological systems. J Wildl Manag 71:2427–2437

    Article  Google Scholar 

  • Huettmann F (2005) Databases and science-based management in the context of wildlife and habitat: toward a certified ISO standard for objective decision-making for the global community by using the internet. The Journal of Wildlife Management 69 (2):466–472

    Article  Google Scholar 

  • Inkley DB, Anderson MG, et al (2004) Global climate change and wildlife in North America. Wildl Soc: 34

    Google Scholar 

  • Iverson LR, Schwartz MW, et al (2004) How fast and far might tree species migrate in the eastern United States due to climate change? Global Ecol Biogeogr 13:209–219

    Article  Google Scholar 

  • Jennings MD (2000) Gap analysis: concepts, methods, and resent results. Landsc Ecol 15:5–20

    Article  Google Scholar 

  • Kappelle M, Vuuren MMIV, et al (1999) Effects of climate change on biodiversity: a review and identification of key research issues. Biodiver Conserv 8:1383–1397

    Article  Google Scholar 

  • Kodric-Brown A, Brown JH (1998) Incomplete datasets in community ecology and biogeography: a cautionary tale. Ecol Appl 3:736–742

    Article  Google Scholar 

  • Koeln GT, Cowardin LM, et al (1994) Geographic information systems. In: Bookhout TA Research and management techniques for wildlife and habitats. The Wildlife Society, Bethesda, MD

    Google Scholar 

  • Lobo JM (2008) More complex distribution models or more representative data? Biodiver Inform 5:14–19

    Google Scholar 

  • Lunetta RS (1998) Applications, project formulation, and analytical approach. In: Lunetta RS, Elvidge CD Remote sensing change detection: environmental monitoring methods and applications. Ann Arbor, Chelsea, Michigan

    Google Scholar 

  • Lunetta RS, Lyon JG, et al (1998) North American Landscape Characterization: triplicate data sets and data fusion products. In: Lunetta RS, Elvidge CD Remote sensing change detection: environmental monitoring methods and applications. Ann Arbor, Chelsea, Michigan

    Google Scholar 

  • MacKenzie DI, Nichols JD, et al (2006) Estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, San Diego, CA

    Google Scholar 

  • Magness DR, Huettmann F, et al (2008) Using random forests to provide predicted species distribution maps as a metric for ecological inventory & monitoring programs. In: Smolinski TG, Milanova MG, Hassanien A-E Applications of computational intelligence in biology: current trends and open problems. Studies in computational intelligence, Springer, Berlin

    Google Scholar 

  • Manly B, McDonald L, et al (1993) Resource selection by animals: statistical design for field studies. Chapman & Hall, London

    Google Scholar 

  • McHarg IL (1969) Design with nature. Doubleday & Company, Garden City, NJ

    Google Scholar 

  • Morrison ML, Marcot BG, et al (1992) Wildlife-habitat relationships: concepts and applications. The University of Wisconsin Press, Madison

    Google Scholar 

  • Morton J, Bowser M, et al (2009) Long term ecological monitoring program on the Kenai National Wildlife Refuge: an FIA adjunct inventory. In: McWilliams W, Moisen G, Czaplewski R Forest inventory and analysis (FIA) symposium, 21–23 October 2008, Park City, UT, USDA Forest Service, Rocky Mountain Research Station RMRS-P-56CD

    Google Scholar 

  • Nichols JD, Williams BR (2006) Monitoring for Conservation. Trends Ecol Evol 21:668–673

    Article  PubMed  Google Scholar 

  • Niemuth ND, Reynolds RE, et al (2008) Landscape-level planning for conservation of wetland birds in the US Prairie Pothole Region. In: Millspaugh JJ, Thompson FR III Models for planning wildlife conservation in large landscapes. Elsevier, Amsterdam

    Google Scholar 

  • Noss RF (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conserv Biol 15:578–590

    Article  Google Scholar 

  • Nusser SM, Goebel JJ (1997) The national resources inventory: a long-term multi-resource monitoring programme. Environ EcolStat 4:181–204

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, et al (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Prasad AM, Iverson LR, et al (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199

    Article  Google Scholar 

  • Rodriguez JP, Brotons L, et al (2007) The application of predictive modeling of species distribution to biodiversity conservation. Diversity Distributions 13:243–251

    Article  Google Scholar 

  • Root TL, Schneider SH (2001) Climate change: overview and implications for wildlife. In: Schneider SH, Root TL Wildlife responses to climate change: North American case studies. Island, Washington, DC

    Google Scholar 

  • Scott JM, Davis F, et al (1993) Gap analysis: a geographic approach to the protection of biological diversity. Wildl Monogr 123

    Google Scholar 

  • Scott JM, Heglund PJ, et al (2002) Predicting species occurrences: issues of accuracy and scale. Island, Washington, DC

    Google Scholar 

  • Smith WB (2002) Forest inventory and analysis: a national inventory and monitoring program. Enviro Pollut 116:S233–S242

    Article  CAS  Google Scholar 

  • Stockwell D, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Internat J Geograph Info Sci 13:143–158

    Article  Google Scholar 

  • Stoms DM (2007. Actual vegetation layer. In: Scott JM, Jennings MD A handbook for gap analysis. Version 2.0 Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, Moscow

    Google Scholar 

  • Stow DA, Hope A, et al (2004) Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sensing of Environment 89:281–308

    Article  Google Scholar 

  • Tremblay J-P, Hester A, et al (2004) Choice and development of decision support tools for the sustainable management of deer-forest systems. For Ecol Manag 191:1–16

    Article  Google Scholar 

  • Vitousek PM, Lubchenco J, et al (1997) Human domination of Earth's ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Walters C (1986) Adaptive management of renewable resources. Blackburn, Caldwell, NJ

    Google Scholar 

  • Yen PPW, Huettmann F, et al (2004) A large-scale model for the at-sea distribution and abundance of Marbled Murrlets (Brachyramphus marmoratus) during the breeding season in coastal British Columbis, Canada. Ecol Model 171:395–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn Robin Magness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Magness, D.R., Morton, J.M., Huettmann, F. (2010). How Spatial Information Contributes to the Conservation and Management of Biodiversity. In: Cushman, S.A., Huettmann, F. (eds) Spatial Complexity, Informatics, and Wildlife Conservation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87771-4_23

Download citation

Publish with us

Policies and ethics