Skip to main content

Space in Agent-Based Models

  • Chapter
  • First Online:
Agent-Based Models of Geographical Systems

Abstract

The chapter offers an overview of the issues related to the integration and representation of space in agent-based models (ABMs), with a focus on those models that can be considered spatially explicit. Key aspects of space in ABM are highlighted, related to: the role of space as an attribute of agents and the environment; as an interaction component; as a determinant of issues of scale; and as a tool for communicating and validating model outcomes. The chapter reviews the issues and challenges arising from the difficulties of integrating space in agent-based modeling. It outlines the emerging trend towards improving the level of realism in representing space, which can lead not only to an enhanced comprehension of model design and outcomes, but to an enhanced theoretical and empirical grounding of the entire field of agent-based modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandridis, K., & Pijanowski, B. C. (2007). Assessing multiagent parcelization performance in the MABEL simulation model using Monte Carlo replication experiments. Environment and Planning B: Planning and Design, 34(2), 223–244.

    Article  Google Scholar 

  • Axtell, R. L. (2000). Why agents? On the varied motivations for agent computing in the social sciences, center on social and economic dynamics (Working Paper 17). Washington,DC: The Brookings Institute.

    Google Scholar 

  • Barros, J. (2003). Simulating urban dynamics in Latin American cities. In Proceedings of the 7th International Conference on Geocomputation, University of Southampton, Southampton.

    Google Scholar 

  • Batty, M. (2005). Agents, cells, and cities: New representational models for simulating multiscale urban dynamics. Environment and Planning A, 37, 1373–1394.

    Article  Google Scholar 

  • Batty, M., Xie, Y., & Sun, Z. (1999). Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23, 205–233.

    Article  Google Scholar 

  • Batty, M., Desyllas, J., & Duxbury, E. (2003). The discrete dynamics of small-scale spatial events: Agent-based models of mobility in carnivals and street parades. International Journal of Geographic Information Science, 17(7), 673–697.

    Article  Google Scholar 

  • Benenson, I., & Torrens, P. M. (2004). Geosimulation: Object-based modeling of urban phenomena. Computers, Environment and Urban Systems, 28, 1–8.

    Article  Google Scholar 

  • Benenson, I., Omer, I., & Hatna, E. (2002). Entity-based modeling of urban residential dynamics: The case of Yaffo, Tel Aviv. Environment and Planning B: Planning and Design, 29, 491–512.

    Article  Google Scholar 

  • Benenson, I., Aronovich, S., & Noam, S. (2005). Let’s talk objects: Generic methodology for urban high-resolution simulation. Computers, Environment and Urban Systems, 29(4), 425–453.

    Article  Google Scholar 

  • Berger, T., & Schreinemachers, P. (2006). Creating agents and landscapes for multiagent systems from random samples. Ecology and Society, 11(2), 19.

    Google Scholar 

  • Berger, T., Couclelis, H., Manson, S. M., & Parker, D. C. (2002). Agent based models of LUCC. In D. C. Parker, T. Berger & S. M. Manson (Eds.), Agent-based Models of Land Use and Land Cover Change, (LUCC) (Report Series No. 6) (pp. 1–2). LUCC Focus 1 Office, Indiana University, Bloomington.

    Google Scholar 

  • Brown, D. G. (2005). Agent-based models. In H. Geist (Ed.), The earth’s changing land: An encyclopedia of land-use and land-cover change. Westport: Greenwood Publishing Group.

    Google Scholar 

  • Brown, D. G., Riolo, R., Robinson, D. T., North, M., & Rand, W. (2005). Spatial process and data models: Toward integration of agent-based models and GIS. Journal of Geographic Systems, 7(1), 25–47.

    Article  Google Scholar 

  • Brown, D. G. R., An, L., Nassauer, J. I., Zellner, M., Rand, W., Riolo, R., Page, S. E., Low, B., & Wang, Z. (2008). Exurbia from the bottom-up: Confronting empirical challenges to characterizing a complex system. Geoforum, 39(2), 805–818.

    Article  Google Scholar 

  • Castle, C., & Crooks, A. T. (2006). Principles and concepts of agent-based modelling for developing geospatial simulations (Working Paper 110). London: CASA.

    Google Scholar 

  • Chen, Q., & Mynett, A. E. (2003). Effects of cell size and configuration in cellular automata based prey–predator modeling. Simulation Modelling Practice and Theory, 11, 609–625.

    Article  Google Scholar 

  • Conzen, M. R. G. (1960). Alnwick, Northumberland: A study in town plan analysis (Publication No. 27). London: Institute of British Geographers.

    Google Scholar 

  • Couclelis, H. (1985). Cellular worlds: A framework for modeling micro-macro dynamics. Environment and Planning A, 17, 585–596.

    Article  Google Scholar 

  • Crooks, A. T., & Hudson-Smith, A. (2008). Techniques and tools for three dimensional visualisation and communication of spatial agent-based models. In Proceedings from Agent-based Spatial Simulation Workshop. Paris: ISC-PIF.

    Google Scholar 

  • Crooks, A., Castle, C., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32, 417–430.

    Article  Google Scholar 

  • Deadman, P. J., Robinson, D. T., Moran, E., & Brondizio, E. (2004). Effects of colonist household structure on land use change in the Amazon Rainforest: An agent based simulation approach. Environment and Planning B: Planning and Design, 31, 693–709.

    Article  Google Scholar 

  • Dibble, C., & Feldman, P. G. (2004). The GeoGraph 3D computational laboratory: Network and terrain landscapes for repast. Journal of Artificial Societies and Social Simulation, 7(1). Available at: http://jasss.soc.surrey.ac.uk/7/1/7.html

  • Epstein, J., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Cambridge: MIT Press.

    Google Scholar 

  • Erickson, B., & Lloyd-Jones, T. (1997). Experiments with settlement aggregation models. Environment and Planning B: Planning and Design, 24(6), 903–928.

    Article  Google Scholar 

  • Ettema, D., de Jong, K., Timmermans, H., & Bakema, A. (2007). PUMA: Multi-agent modelling of urban systems. In 45th Congress of the European Regional Science Association. Amsterdam: Vrije Universiteit.

    Google Scholar 

  • Evans, T. P., & Manson, S. (2007). Space, complexity, and agent-based modeling – Editorial. Environment and Planning B: Planning and Design, 34(2), 196–199.

    Article  Google Scholar 

  • Flache, A., & Hegselmann, R. (2001). Do irregular grids make a difference? Relaxing the spatial regularity assumption, in cellular models of social dynamics. Journal of Artificial Societies and Social Simulation, 4(4). Available at: http://www.soc.surrey.ac.uk/JASSS/4/4/6.html

  • Fossett, M., & Dietrich, D. R. (2009). Effects of city size, shape, and form, and neighborhood size and shape in agent-based models of residential segregation: Are Schelling-style preference effects robust? Environment and Planning B: Planning and Design, 36, 149–169.

    Article  Google Scholar 

  • Gimblett, H. R., Richards, M. T., & Itami, R. M. (2002). Simulating wildland recreation use and conflicting spatial interactions using rule-driven intelligent agents. In H. R. Gimblett (Ed.), Integrating geographic information systems and agent-based modeling techniques for simulating social and ecological processes (pp. 211–243). Oxford: Oxford University Press.

    Google Scholar 

  • Goodchild, M. (2001). Issues in spatially explicit modeling. In D. Parker, T. Berger & S. M. Manson (Eds.), Agent-based models of land-use and land-cover change (pp. 13–17). Irvine.

    Google Scholar 

  • Hamman, Y., Moore, A., & Whigham, P. (2007). The dynamic geometry of geographical vector agents. Computers, Environment and Urban Systems, 31(5), 502–519.

    Article  Google Scholar 

  • Irwin, E., & Bockstael, N. (2002). Interacting agents, spatial externalities, and the evolution of residential land-use patterns. Journal of Economic Geography, 2(1), 31–54.

    Article  Google Scholar 

  • Janssen, M. A., & Ostrom, E. (2007). Empirically based agent-based modeling. Ecology and Society, 11(2), 37.

    Google Scholar 

  • Jantz, C. A., & Goetz, S. J. (2005). Analysis of scale dependencies in an urban land-use-change model. International Journal of Geographical Information Science, 19(2), 217–241.

    Article  Google Scholar 

  • Jenerette, G. D., & Wu, J. (2001). Analysis and simulation of land-use change in the central Arizona – Phoenix region, USA. Landscape Ecology (16), 611–626.

    Google Scholar 

  • Kocabas, V., & Dragicevic, S. (2006). Assessing cellular automata model behaviour using a sensitivity analysis approach. Computers, Environment and Urban Systems, 30(6), 921–953.

    Article  Google Scholar 

  • Lam, N., & Quattrochi, D. A. (1992). On the issues of scale, resolution, and fractal analysis in the mapping sciences. The Professional Geographer, 44, 88–98.

    Article  Google Scholar 

  • Ligtenberg, A., Bregt, A. K., & von Lammeren, R. (2001). Multi-actor-based land use modelling: Spatial planning using agents. Landscape and Urban Planning, 56, 21–33.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: W.H. Freeman.

    Google Scholar 

  • Manson, S. (2006). Land use in the southern Yucatan peninsular region of Mexico: Scenarios of population and institutional change. Computers, Environment and Urban Systems, 30, 230–253.

    Article  Google Scholar 

  • Mathevet, R., Bousquet, F., Le Page, C., & Antona, M. (2003). Agent-based simulations of interactions between duck population, farming decisions and leasing of hunting rights in the Camargue (Southern France). Ecological Modelling, 165, 107–126.

    Article  Google Scholar 

  • Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: A review of applications. Landscape Ecology, 22, 1447–1459.

    Article  Google Scholar 

  • Menard, A., & Marceau, D. J. (2005). Exploration of spatial scale sensitivity in geographic cellular automata. Environment and Planning B: Planning and Design, 32, 693–714.

    Article  Google Scholar 

  • Miller, H. J. (1999). Measuring space-time accessibility benefits within transportation networks: Basic theory and computation procedures. Geographical Analysis, 31(2), 187–213.

    Article  Google Scholar 

  • Miller, E. J., Hunt, J. D., Abraham, J. E., & Salvini, P. A. (2004). Microsimulating urban systems. Computers, Environment and Urban Systems, 28(1–2), 9–44.

    Article  Google Scholar 

  • Openshaw, S. (1983). The modifiable areal unit problem (CATMOG 38). Norwich: GeoBooks.

    Google Scholar 

  • O’Sullivan, D. (2001). Graph-cellular automata: A generalised discrete urban and regional model. Environment and Planning B Planning and Design, 28, 687–705.

    Article  Google Scholar 

  • Parker, D. C., Manson, S. M., Jansen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93(2), 314–337.

    Article  Google Scholar 

  • Patel, A., & Hudson-Smith, A. (2012). Agent-tools, techniques and methods for macro and microscopic simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 379–407). Dordrecht: Springer.

    Google Scholar 

  • Phipps, M. (1989). Dynamical behavior of cellular automata under the constraint of neighborhood coherence. Geographical Analysis, 21, 197–215.

    Article  Google Scholar 

  • Polhill, J. G., Gotts, N. M., & Law, A. N. R. (2001). Imitative versus nonimitative strategies in a land use simulation. Cybernetics and Systems, 32(1–2), 285–307.

    Google Scholar 

  • Portugali, J. (2000). Self-organization and the city. Berlin: Springer.

    Google Scholar 

  • Portugali, J., & Benenson, I. (1997). Human agents between local and global forces in a self-organizing city. In F. Schweitzer (Ed.), Self-organization of complex structures: From individual to collective dynamics (pp. 537–546). London: Gordon & Breach.

    Google Scholar 

  • Portugali, J., Benenson, I., & Omer, I. (1994). Sociospatial residential dynamics: Stability and instability within a self-organizing city. Geographical Analysis, 26(4), 321–340.

    Article  Google Scholar 

  • Rand, W., Zellner M., Page, S. E., Riolo, R., Brown, D. G., Fernandez, L. E. (2002). The complex interaction of agents and environments: an example in urban sprawl. In Proceedings of Agent 2002. Chicago: Argonne National Laboratory.

    Google Scholar 

  • Riolo, R. L., Axelrod, R., & Cohen, M. D. (2001). Evolution of cooperation without reciprocity. Nature, 414, 441–443.

    Article  Google Scholar 

  • Sanders, L., Pumain, D., Mathian, H., Guerin-Pace, F., & Bura, S. (1997). SIMPOP: A multiagent system for the study of urbanism. Environment and Planning B: Planning and Design, 24, 287–305.

    Article  Google Scholar 

  • Saura, S., & Millan, M. (2001). Sensitivity of landscape pattern metrics to map spatial extent. Photogrammetric Engineering and Remote Sensing, 67(9), 1027–1036.

    Google Scholar 

  • Semboloni, F. (2000). The growth of an urban cluster into a dynamic self-modifying spatial pattern. Environment and Planning B: Planning and Design, 27(4), 549–564.

    Article  Google Scholar 

  • Semboloni, F., Assfalg, J., Armeni, S., Gianassi, R., & Marsoni, F. (2004). CityDev, an interactive multi-agents urban model on the web. Computers, Environment and Urban Systems, 28(1–2), 45–64.

    Article  Google Scholar 

  • Shi, W., & Pang, M. Y. C. (2000). Development of voronoi-based cellular automata: An integrated dynamic model for geographical information systems. International Journal of Geographical Information Science, 14(5), 455–474.

    Article  Google Scholar 

  • Stanilov, K. (2009). Capturing urban form patterns and processes: Insights from the field of urban morphology. In Conference Presentation, S4 European Spatial Analysis Network. London: UCL.

    Google Scholar 

  • Stevens, D., & Dragicevic, S. (2007). A GIS-based irregular cellular automata model of land-use change. Environment and Planning B: Planning and Design, 34(4), 708–724.

    Article  Google Scholar 

  • Thorp, J., Guerin, S., Wimberly, F., Rossbach, M., Densmore, O., Agar, M., & Roberts, D. (2006). Agent-based modelling of wildfire evacuation. In D. Sallach, C. M. Macal & M. J. North (Eds.), Proceedings of the Agent 2006 Conference on Social Agents: Results and Prospects. Chicago: University of Chicago and Argonne National Laboratory. Available at: http://agent2007.anl.gov/2006procpdf/Agent_2006.pdf

  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2), 234–240.

    Article  Google Scholar 

  • Torrens, P. M., & Benenson, I. (2005). Geographic automata systems. International Journal of Geographical Information Science, 19(4), 385–412.

    Article  Google Scholar 

  • Torrens, P. M., & O’Sullivan, D. (2001). Cellular automata and urban simulation: Where do we go from here? Environment and Planning B: Planning and Design, 28(2), 163–168.

    Article  Google Scholar 

  • Vancheri, A., Giordano, P., Andrey, D., & Albeverio, S. (2008). Urban growth processes joining cellular automata and multiagent systems. Part 1: Theory and models. Environment and Planning B: Planning and Design, 35(4), 723–739.

    Article  Google Scholar 

  • Verburg, P. H., de Nijs, T. C. M., van Eck, J. R., Visser, H., & de Jong, K. (2004). A method to analyse neighbourhood characteristics of land use patterns. Computers, Environment and Urban Systems, 28(6), 667–690.

    Article  Google Scholar 

  • White, R., Engelen, G., & Uljee, I. (1997). The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B: Planning and Design, 24(3), 323–343.

    Article  Google Scholar 

  • Xie, Y., & Batty, M. (2003). Integrated urban evolutionary modeling (Working Paper 68). London: CASA.

    Google Scholar 

  • Yin, L., & Muller, B. (2007). Residential location and the biophysical environment: Exurban development agents in a heterogeneous landscape. Environment and Planning B: Planning and Design, 34, 279–295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiril Stanilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stanilov, K. (2012). Space in Agent-Based Models. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_13

Download citation

Publish with us

Policies and ethics