Skip to main content

A Logistic Based Cellular Automata Model for Continuous Urban Growth Simulation: A Case Study of the Gold Coast City, Australia

  • Chapter
  • First Online:
Agent-Based Models of Geographical Systems

Abstract

This chapter presents a logistic based cellular automata model to simulate the continuous process of urban growth in space and over time. The model is constructed based on an understanding from empirical studies that urban growth is a continuous spatial diffusion process which can be described through the logistic function. It extends from previous research on cellular automata and logistic regression modelling by introducing continuous data to represent the progressive transition of land from rural to urban use. Specifically, the model contributes to urban cellular automata modelling by (1) applying continuous data ranging from 0 to 1 inclusive to represent the none-discrete state of cells from non-urban to urban, with 0 and 1 representing non-urban and urban state respectively, and all other values between 0 and 1 (exclusive) representing a stage where the land use is transiting from non-urban to urban state; (2) extending the typical categorical data based logistic regression model to using continuous data to generate a probability surface which is used in a logistic growth function to simulate the continuous process of urban growth. The proposed model was applied to a fast growing region in Queensland’s Gold Coast City, Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida, C. M., Gleriani, J. M., Castejon, E. F., & Soares-Filho, B. S. (2008). Using neural networks and cellular automata for modelling intra-urban land-use dynamics. International Journal of Geographical Information Science, 22, 943–963.

    Google Scholar 

  • Australian Bureau of Statistics. (2005). Information paper: Draft mesh blocks, Australia, 2005 ABS Cat. No. 1209.0.55.001.

    Google Scholar 

  • Australian Bureau of Statistics. (2006). CDATA Online. Canberra: Australian Bureau of Statistics. http://www.abs.gov.au/CDATAOnline. Accessed 01 Aug 2011.

  • Australian Bureau of Statistics. (2011). Regional Population Growth, Australia, 2009–10 ABS Cat. No. 3218.0.

    Google Scholar 

  • Bryant, C. R., Russwurm, L. H., & McLellan, A. G. (1982). The city’s countryside: Land and its management in the rural-urban fringe. New York: Longman.

    Google Scholar 

  • Cheng, J., & Masser, I. (2004). Understanding spatial and temporal processes of urban growth: Cellular automata modelling. Environment and Planning B: Planning and Design, 31, 167–194.

    Article  Google Scholar 

  • Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12, 699–714.

    Article  Google Scholar 

  • Clarke, K. C., Hoppen, S., & Gaydos, L. J. (1997). A self-modifying cellular automaton model of historical urbanization in the San Franciso Bay area. Environment and Planning B: Planning and Design, 24, 247–261.

    Article  Google Scholar 

  • Dendoncker, N., Rounsevell, M., & Bogaert, P. (2007). Spatial analysis and modelling of land use distributions in Belgium. Computers, Environment and Urban Systems, 31, 188–205.

    Article  Google Scholar 

  • Department of Infrastructure and Planning. (2009). South East Queensland Regional Plan 2009–2031. Brisbane: Queensland Government. http://www.dlgp.qld.gov.au/regional-planning/south-east-queensland-regional-plan-2009-2031.html. Accessed 30 Aug 2011.

  • Dragićević, S. (2004). Coupling fuzzy sets theory and GIS-based cellular automata for land-use change modelling. In Fuzzy Information, IEEE Annual Meeting of the Processing NAFIPS’04, Banff, pp. 203–207.

    Google Scholar 

  • Fang, S., Gertner, G. Z., Sun, Z., & Anderson, A. A. (2005). The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landscape and Urban Planning, 73, 294–306.

    Article  Google Scholar 

  • Feng, Y. J., Liu, Y., Tong, X. H., Liu, M. L., & Deng, S. (2011). Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 102, 188–196.

    Google Scholar 

  • Gobim, A., Campling, P., & Feyen, J. (2002). Logistic modeling to derive agricultural land determinants: A case study from southeastern Nigeria. Agriculture, Ecosystem and Environment, 89, 213–228.

    Article  Google Scholar 

  • Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. Princeton: Princeton University Press.

    Google Scholar 

  • Grimm, V., & Railsback, S. F. (2012). Designing, formulating and communicating agent-based models. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 361–377). Dordrecht: Springer.

    Google Scholar 

  • Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., MĂĽller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., RĂĽger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U., & DeAngelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115–126.

    Article  Google Scholar 

  • Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768. doi:10.1016/j.ecolmodel.2010.08.019.

    Article  Google Scholar 

  • Herbert, D. T., & Thomas, C. J. (1997). Cities in space: City as place (3rd ed.). London: David Fulton.

    Google Scholar 

  • Iltanen, S. (2012). Cellular automata in urban spatial modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 69–84). Dordrecht: Springer.

    Google Scholar 

  • Jakobson, L., & Prakash, V. (1971). Urbanization and national development. Beverley Hills: Sage.

    Google Scholar 

  • John, F. B., Peter, W. N., Peter, H., & Peter, N. (1985). The future of urban form: The impact of new technology. London: Croom Helm.

    Google Scholar 

  • Li, H., & Wu, J. (2004). Use and misuse of landscape indices. Landscape Ecology, 19, 389–399.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G. O. (2000). Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14, 131–152.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G. O. (2002a). Urban simulation using principal components analysis and cellular automata for land-use planning. Photogrammetric Engineering and Remote Sensing, 68(4), 341–351.

    Google Scholar 

  • Li, X., & Yeh, A. G. O. (2002b). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4), 323–343.

    Article  Google Scholar 

  • Linge, G. J. R. (1965). The delimitation of urban boundaries for statistical purposes with special reference to Australia. Canberra: Australia National University.

    Google Scholar 

  • Liu, Y. (2008). Modelling urban development with geographical information systems and cellular automata. New York: CRC Press.

    Book  Google Scholar 

  • Liu, Y., & Phinn, S. R. (2003). Modelling urban development with cellular automata incorporating fuzzy-set approaches. Computers, Environment and Urban Systems, 27, 637–658.

    Article  Google Scholar 

  • Liu, X., Li, X., Shi, X., Wu, S., & Liu, T. (2008a). Simulating complex urban development using kernel based non-linear cellular automata. Ecological Modelling, 211(1–2), 169–181.

    Article  Google Scholar 

  • Liu, X., Li, X., Liu, L., He, J., & Ai, B. (2008b). A bottom-up approach to discover transition rules of cellular automata using ant intelligence. International Journal of Geographical Information Science, 22(11), 1247–1269.

    Article  Google Scholar 

  • Mandelas, E. A., Hatzichristos, T., & Prastacos, P. (2007). A fuzzy cellular automata based shell for modeling urban growth – a pilot application in Mesogia area. In 10th AGILE International Conference on Geographic Information Science 2007, Denmark.

    Google Scholar 

  • McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). FRAGSTATS: Spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 03 May 2011.

  • Office of Economic and Statistical Research. (2010). Population and housing profile – Gold Coast City council. Brisbane: Queensland Government. http://www.oesr.qld.gov.au/products/profiles/pop-housing-profiles-lga/pop-housing-profile-gold-coast.pdf. Accessed 30 Aug 2011.

  • Openshaw, S. (1984). The modifiable areal unit problem. In Concepts and techniques in modern geography 38. Norwich: Geo Books.

    Google Scholar 

  • Potter, R., Binns, T., Elliott, J. A., & Smith, D. (2003). Geographies of development (2nd ed.). London: Longman.

    Google Scholar 

  • Power, C., Simms, A., & White, R. (2001). Hierarchical fuzzy pattern matching for the regional comparison of land use maps. International Journal of Geographical Information Science , 15(1), 77–100.

    Google Scholar 

  • Pryor, R. J. (1968). Defining the rural-urban fringe. Social Forces, 202–215.

    Google Scholar 

  • Sherrod, P. H. (2010). DTREG: Predictive modeling software. http://www.dtreg.com/DTREG.pdf. Accessed 01 May 2011.

  • Sui, D. Z., & Zeng, H. (2001). Modeling the dynamics of landscape structure in Asia’s emerging desakota regions: A case study in Shenzhen. Landscape and Urban Planning, 53, 37–52.

    Article  Google Scholar 

  • Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. (2002). Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 30(3), 391–405.

    Article  Google Scholar 

  • Ward, D. P., Murray, A. T., & Phinn, S. R. (2000). Monitoring growth in rapidly urbanizing areas using remotely sensed data. The Professional Geographer, 52, 371–386.

    Article  Google Scholar 

  • Ward, D. P., Murray, A. T., & Phinn, S. R. (2003). Integrating spatial optimization and cellular automata for evaluating urban change. The Annuals of Regional Science, 37, 131–148.

    Article  Google Scholar 

  • White, R. W., & Engelen, G. (1993). Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land use patterns. Environment and Planning A, 25, 1175–1193.

    Article  Google Scholar 

  • Wu, F. (1996). A linguistic cellular automata simulation approach for sustainable land development in a fast growing region. Computers, Environment, and Urban Systems, 20, 367–387.

    Article  Google Scholar 

  • Wu, F. (1998a). An experiment on the generic polycentricity of urban growth in a cellular automatic city. Environment and Planning B: Planning and Design, 25, 731–752.

    Article  Google Scholar 

  • Wu, F. (1998b). Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system. Journal of Environmental Management, 53(16), 293–308.

    Article  Google Scholar 

  • Wu, F. (1998c). SimLand: A prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. International Journal of Geographical Information Science, 12, 63–82.

    Article  Google Scholar 

  • Wu, F. (2002). Calibration of stochastic cellular automata: The application to rural-urban land conversions. International Journal of Geographical Information Science, 16(8), 795–818.

    Article  Google Scholar 

  • Wu, F., & Webster, C. J. (1998). Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B: Planning and Design, 25, 103–126.

    Article  Google Scholar 

  • Wu, F., & Yeh, A. G. O. (1997). Changing spatial distribution and determinants of land development in Chinese cities in the transition from a centrally planned economy to a socialist market economy: A case study of Guangzhou. Urban Studies, 34, 1851–1879.

    Article  Google Scholar 

  • Yang, Q., Li, X., & Shi, X. (2008). Cellular automata for simulating land use changes based on support vector machines. Computers and Geosciences, 34(6), 592–602.

    Article  Google Scholar 

  • Zhu, Z., Liu, L., Chen, Z., Zhang, J., & Verburg, P. H. (2009). Land-use change simulation and assessment of driving factors in the loess hilly region – a case study as Pengyang County. Environmental Monitoring and Assessment, 164(1–4), 133–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Liu, Y., Feng, Y. (2012). A Logistic Based Cellular Automata Model for Continuous Urban Growth Simulation: A Case Study of the Gold Coast City, Australia. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_32

Download citation

Publish with us

Policies and ethics