Skip to main content

Agent-Based Modeling and Complexity

  • Chapter
  • First Online:
Agent-Based Models of Geographical Systems

Abstract

Complexity theory provides a common language and rubric for applying agent-based processes to a range of complex systems. Agent-based modeling in turn advances complexity science by actuating many complex system characteristics, such as self-organization, nonlinearity, sensitivity, and resilience. There are many points of contact between complexity and agent-based modeling, and we examine several of particular importance: the range of complexity approaches; tensions between theoretical and empirical research; calibration, verification, and validation; scale; equilibrium and change; and decision making. These issues, together and separately, comprise some of the key issues found at the interface of complexity research and agent-based modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arthur, W. B. (1991). Designing economic agents that act like human agents: A behavioral approach to bounded rationality. American Economic Review, Papers and Proceedings, 81(2), 353–359.

    Google Scholar 

  • Axelrod, R. M. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton: Princeton University Press.

    Google Scholar 

  • Axtell, R. L., Epstein, J. M., Dean, J. S., Gumerman, G. J., Swedlund, A. C., Harburger, J., et al. (2002). Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley. Proceedings of the National Academy of Sciences, 99(Suppl 3), 7275.

    Article  Google Scholar 

  • Bak, P. (1996). How nature works: The science of self-organized criticality. New York: Copernicus Books.

    Google Scholar 

  • Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509.

    Article  Google Scholar 

  • Batten, D. F. (2000). Discovering artificial economics: how agents learn and economies evolve. Boulder: Westview Press.

    Google Scholar 

  • Brose, U., Ostling, A., Harrison, K., & Martinez, N. D. (2004). Unified spatial scaling of species and their trophic interactions. Nature, 428(6979), 167–171.

    Article  Google Scholar 

  • Brown, D. G. & Robinson, D. T. (2006). Effects of heterogeneity in residential preferences on an agent-based model of urban sprawl. Ecology and Society, 11(1). http://www.ecologyandsociety.org/vol11/iss11/art46/

  • Brown, D. G., Riolo, R., Robinson, D. T., North, M., & Rand, W. (2005). Spatial process and data models: Toward integration of agent-based models and GIS. Journal of Geographical Systems, 7, 1–23.

    Article  Google Scholar 

  • Byrne, D. (1998). Complexity theory and the social sciences. London: Routledge.

    Google Scholar 

  • Carrillo-Hermosilla, J. (2006). A policy approach to the environmental impacts of technological lock-in. Ecological Economics, 58(4), 717.

    Article  Google Scholar 

  • Chaitin, G. J. (1974). Information-theoretic computational complexity. IEEE Transactions on Information Theory, IT20, 10–15.

    Article  Google Scholar 

  • Chen, S.-H. (2005). Computational intelligence in economics and finance: Carrying on the legacy of Herbert Simon. Information Sciences, 170(1), 121–131.

    Article  Google Scholar 

  • Chen, Y., Irwin, E. G., & Jayaprakash, C. (2009). Dynamic modeling of environmental amenity-driven migration with ecological feedbacks. Ecological Economics, 68(10), 2498–2510.

    Article  Google Scholar 

  • Cilliers, P. (1998). Complexity and postmodernism: Understanding complex systems. New York: Routledge.

    Google Scholar 

  • Clark, W. A. V. (2008). Geography, space, and science: Perspectives from studies of migration and geographical sorting. Geographical Analysis, 40(3), 258–275.

    Article  Google Scholar 

  • Dawid, H. (1999). On the convergence of genetic learning in a double auction market. Journal of Economic Dynamics and Control, 23(9–10), 1545–1567.

    Article  Google Scholar 

  • Dean, J. S., Gumerman, G. J., Epstein, J. M., Axtell, R. L., Swedlund, A. C., Parker, M. T., et al. (2000). Understanding Anasazi culture change through agent-based modeling. In T. A. Kohler & G. J. Gumerman (Eds.), Dynamics of human and primate societies: Agent-based modeling of social and spatial processes (pp. 179–205). New York: Oxford University Press.

    Google Scholar 

  • Easterling, W. E., & Kok, K. (2002). Emergent properties of scale in global environmental modeling – Are there any? Integrated Assessment, 3(2–3), 233–246.

    Article  Google Scholar 

  • Easterling, W. E., & Polsky, C. (2004). Crossing the divide: Linking global and local scales in human-environment systems. In E. Sheppard & R. McMaster (Eds.), Scale and geographic inquiry: Nature, society and method (pp. 66–85). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Edmonds, B., & Moss, S. (1997). Modelling bounded rationality using evolutionary techniques. Lecture Notes in Computer Science, 1305, 31–42.

    Article  Google Scholar 

  • Epstein, J. M. (2006). Generative social science: studies in agent-based computational modeling. Princeton: Princeton University Press.

    Google Scholar 

  • Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460(7256), 685–686.

    Article  Google Scholar 

  • Folke, C. (2006). Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environmental Change, 16(3), 253–267.

    Article  Google Scholar 

  • Fossett, M. (2006). Ethnic preferences, social distance dynamics, and residential segregation: Theoretical explorations using simulation analysis. Journal of Mathematical Sociology, 30(3–4), 185.

    Article  Google Scholar 

  • Funtowitcz, S. O., & Ravetz, J. R. (1994). Emergent complex systems. Futures, 26(6), 568–582.

    Article  Google Scholar 

  • Gatti, D. D., Di Guilmi, C., Gaffeo, E., Giulioni, G., Gallegati, M., & Palestrini, A. (2005). A new approach to business fluctuations: Heterogeneous interacting agents, scaling laws and financial fragility. Journal of Economic Behavior & Organization, 56(4), 489.

    Article  Google Scholar 

  • Gell-Mann, M. (1994). What is complexity? Complexity, 1(1), 1–9.

    Google Scholar 

  • Gibson, C., Ostrom, E., & Ahn, T.-K. (2000). The concept of scale and the human dimensions of global change: A survey. Ecological Economics, 32(2), 217–239.

    Article  Google Scholar 

  • Gigerenzer, G., & Selton, R. (2001). Bounded rationality: The adaptive toolbox. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gilbert, N. (1995). Emergence in social simulation. In N. Gilbert & R. Conte (Eds.), Artificial societies: The computer simulation of social life (pp. 144–156). London: UCL Press.

    Google Scholar 

  • Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420.

    Article  Google Scholar 

  • Holland, J. H. (1995). Hidden order: How adaptation builds complexity. Reading: Addison-Wesley.

    Google Scholar 

  • Holland, J. H. (1998). Emergence: From chaos to order. Philadelphia: Perseus Press.

    Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

    Article  Google Scholar 

  • Holling, C. S. (1996). Engineering resilience versus ecological resilience. In P. Schulze (Ed.), Engineering with ecological restraints (pp. 31–43). Washington, D.C.: National Academy Press.

    Google Scholar 

  • Irwin, E., Jayaprakash, C., & Munroe, D. (2009). Towards a comprehensive framework for modeling urban spatial dynamics. Landscape Ecology, 24(9), 1223–1236.

    Article  Google Scholar 

  • Janssen, M. A. (2009). Understanding artificial Anasazi. Journal of Artificial Societies and Social Simulation, 12(4), 13. Available at: http://jasss.soc.surrey.ac.uk/12/4/13.html

  • Janssen, M. A., & Ostrom, E. (2006). Empirically based, agent-based models. Ecology and Society, 11(1). http://www.ecologyandsociety.org/vol11/iss12/art37/

  • Levin, S. A., & Lubchenco, J. (2008). Resilience, robustness, and marine ecosystem-based management. BioScience, 58(1), 27–32.

    Article  Google Scholar 

  • Lissack, M. (2001). Special issue: What is complexity science? Emergence, 3(1).

    Google Scholar 

  • Lorenz, E. N. (1973). Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? Paper presented at the AAAS Convention of the Global Atmospheric Research Program, Cambridge, MA, Dec 29, 1972.

    Google Scholar 

  • Mainzer, K. (1996). Thinking in complexity: The complex dynamics of matter, mind, and mankind. New York: Springer.

    Google Scholar 

  • Manson, S. M. (2001). Simplifying complexity: A review of complexity theory. Geoforum, 32(3), 405–414.

    Article  Google Scholar 

  • Manson, S. M. (2003). Validation and verification of multi-agent models for ecosystem management. In M. Janssen (Ed.), Complexity and ecosystem management: The theory and practice of multi-agent approaches (pp. 63–74). Northampton: Edward Elgar.

    Google Scholar 

  • Manson, S. M. (2006). Bounded rationality in agent-based models: Experiments with evolutionary programs. International Journal of Geographic Information Science, 20(9), 991–1012.

    Article  Google Scholar 

  • Manson, S. M. (2007). Challenges in evaluating models of geographic complexity. Environment and Planning B: Planning & Design, 34(2), 245–260.

    Article  Google Scholar 

  • Manson, S. M. (2008). Does scale exist? An epistemological scale continuum for complex human-environment systems. Geoforum, 39(2), 776–788.

    Article  Google Scholar 

  • Manson, S. M., & O’Sullivan, D. (2006). Complexity theory in the study of space and place. Environment and Planning A, 38(4), 677.

    Article  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–137.

    Article  Google Scholar 

  • McKelvey, B. (1999). Complexity theory in organization science: Seizing the promise or becoming a fad? Emergence, 1(1), 5–32.

    Article  Google Scholar 

  • Ngo, T. A., & See, L. M. (2012). Calibration and validation of agent-based models of land cover change. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 181–196). Dordrecht: Springer.

    Google Scholar 

  • Nowotny, H. (2005). The increase of complexity and its reduction: Emergent interfaces between the natural sciences, humanities and social sciences. Theory Culture Society, 22(5), 15.

    Article  Google Scholar 

  • O’Neill, R. V. (1988). Hierarchy theory and global change. In T. Rosswall, R. G. Woodmansee, & P. G. Risser (Eds.), Scales and global change (pp. 29–45). New York: Wiley.

    Google Scholar 

  • Ostrom, E. (2005). Understanding institutional diversity. Princeton: Princeton University Press.

    Google Scholar 

  • O’Sullivan, D. (2004). Complexity science and human geography. Transactions of the Institute of British Geographers, 29(3), 282–295.

    Article  Google Scholar 

  • Parker, D. C., & Filatova, T. (2008). A conceptual design for a bilateral agent-based land market with heterogeneous economic agents. Computers, Environment and Urban Systems, 32(6), 454–463.

    Article  Google Scholar 

  • Parker, D. C., Manson, S. M., Janssen, M., Hoffmann, M. J., & Deadman, P. J. (2003). Multi-agent systems for the simulation of land use and land cover change: A review. Annals of the Association of American Geographers, 93(2), 316–340.

    Article  Google Scholar 

  • Phillips, J. D. (2003). Sources of nonlinearity and complexity in geomorphic systems. Progress in Physical Geography, 27(1), 1–23.

    Article  Google Scholar 

  • Phillips, J. D. (2006). Deterministic chaos and historical geomorphology: A review and look forward. Geomorphology, 76(1–2), 109.

    Article  Google Scholar 

  • Portugali, J. (2006). Complexity theory as a link between space and place. Environment and Planning A, 38(4), 647–664.

    Article  Google Scholar 

  • Rind, D. (1999). Complexity and climate. Science, 284(5411), 105–107.

    Article  Google Scholar 

  • Sampson, R. J., Morenoff, J. D., & Gannon-Rowley, T. (2002). Assessing “neighborhood effects”: Social processes and new directions in research. Annual Review of Sociology, 28, 443–478.

    Article  Google Scholar 

  • Sawyer, R. K. (2002). Emergence in sociology: Contemporary philosophy of mind and some implications for sociological theory. American Journal of Sociology, 107, 551–585.

    Article  Google Scholar 

  • Schneider, S., Turner, B. L., II, & Garriga-Morehouse, H. (1998). Imaginable surprise in global change science. Journal of Risk Research, 1(2), 165–185.

    Article  Google Scholar 

  • Simon, H. A. (1997a). Administrative behavior: A study of decision-making processes in administrative organizations. New York: Free Press.

    Google Scholar 

  • Simon, H. A. (1997b). Models of bounded rationality. Cambridge, MA: MIT Press.

    Google Scholar 

  • Skvoretz, J. (2002). Complexity theory and models for social networks. Complexity International, 8(1), 47–55.

    Article  Google Scholar 

  • Torrens, P. (2007). Simulating sprawl. Annals of the Association of American Geographers, 96(2), 248–275.

    Article  Google Scholar 

  • Torrens, P., & O’Sullivan, D. (2001). Cellular automata and urban simulation: Where do we go from here? Environment and Planning B, 28(2), 163–168.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131.

    Article  Google Scholar 

  • von Bertalanffy, L. (1968). General systems theory: Foundation, development, applications. London: Allen Lane.

    Google Scholar 

  • von Neumann, J. (1966). Theory of self-reproducing automata. Champaign-Urbana: University of Illinois Press.

    Google Scholar 

  • Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability and transformability in social-ecological systems. Ecology and Society, 9(2). http//www.ecologyandsociety.org/vol9/iss2/art5/

  • Watts, D. J. (2003). Six degrees: The science of a connected age. New York: W.W. Norton and Co.

    Google Scholar 

  • Wheaton, W. D., Cajka, J. C., Chasteen, B. M., Wagener, D. K., Cooley, P. C., Ganapathi, L., et al. (2009). Synthesized population databases: A US geospatial database for agent-based models. Research Triangle Park: RTI International.

    Book  Google Scholar 

  • Whitehead, A. N. (1925). Science and the modern world. New York: Macmillan.

    Google Scholar 

  • Wiener, N. (1961). Cybernetics: Or, control and communication in the animal and the machine. Cambridge, MA: MIT Press.

    Book  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Aeronautics and Space Administration (NASA) New Investigator Program in Earth-Sun System Science (NNX06AE85G) and the National Science Foundation (0709613). Responsibility for the opinions expressed herein is solely that of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Manson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Manson, S.M., Sun, S., Bonsal, D. (2012). Agent-Based Modeling and Complexity. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_7

Download citation

Publish with us

Policies and ethics