Skip to main content

Introduction to the Physics of Ultrasound

  • Chapter
  • First Online:
Bone Quantitative Ultrasound

Abstract

From an acoustical point of view, bone is a complex medium as it is heterogeneous, anisotropic and viscoelastic. This chapter reviews the basic notions of physical acoustics which are necessary to tackle the problem of the ultrasonic propagation in bone, in the perspective of the application of quantitative ultrasound (QUS) techniques to bone characterization. The first section introduces the basic phenomena related to the field of medical ultrasound. Basic description of wave propagation is introduced. Mechanical bases are necessary to understand the elastodynamic nature of the interaction between bone and ultrasound. The physical determinants of the speed of sound of the different types of waves corresponding to the propagation in a liquid and in a solid are considered. The effects of boundary conditions (guided waves) are also detailed. The second section describes the physical interaction between an ultrasonic wave and bone tissue, by introducing reflection/refraction, attenuation and scattering phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Any kind of wave may be decomposed in a sum of planar waves.

References

  1. D. Royer and E. Dieulesaint,Elastic Waves in Solids I(Springer, New York, 2000).

    Google Scholar 

  2. B. A. Auld,Acoustic Fields and Waves in Solids(Krieger Pub Co, New York, 1990).

    Google Scholar 

  3. J. D. Achenbach,Wave Propagation in Elastic Solids(Elsevier, Amsterdam, 1973).

    Google Scholar 

  4. S. Temkin,Elements of Acoustics(John Wiley & Sons Inc, New York, 1981).

    Google Scholar 

  5. M. A. Hakulinen, J. S. Day, J. Toyras, H. Weinans, and J. S. Jurvelin, “Ultrasonic characterization of human trabecular bone microstructure,” Phys Med Biol.51(6), 1633–1648 (2006).

    Article  PubMed  Google Scholar 

  6. K. Raum, “Microelastic imaging of bone,” IEEE Trans Ultrason Ferroelectr Freq Control55(7), 1417–1431 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. G. Haïat, F. Padilla, R. Barkmann, S. Dencks, U. Moser, C.-C. Glüer, and P. Laugier, “Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur,” Calcif Tissue Int77(3) (2005).

    Google Scholar 

  8. G. Haïat, F. Padilla, R. O. Cleveland, and P. Laugier, “Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens,” IEEE Trans Ultrason Ferroelectr Freq Control53(1), 39–51 (2006).

    Article  PubMed  Google Scholar 

  9. K. A. Wear, “The effects of frequency-dependant attenuation and dispersion on sound speed measurements: applications in human trabecular bone,” IEEE Trans Ultrason Ferroelectr Freq Control47(1), 265–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. K. A. Wear, “A numerical method to predict the effects of frequency-dependent attenuation and dispersion on speed of sound estimates in cancellous bone,” J Acoust Soc Am109(3), 1213–1218 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. M. O’Donnell, E. T. Jaynes, and J. G. Miller, “General relationships between ultrasonic attenuation and dispersion,” J Acoust Soc Am63(6) (1978).

    Google Scholar 

  12. M. O’Donnell, E. T. Jaynes, and J. G. Miller, “Kramers-Kronig relationship between ultrasonic attenuation and phase velocity,” J Acoust Soc Am69(3), 696–701 (1981).

    Article  Google Scholar 

  13. V. Shutilov,Fundamental Physics of Ultrasound(Gordon and Breach, New York, 1988).

    Google Scholar 

  14. N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure wateras a function of temperature,” J Acoust Soc Am93(3), 1609–1612 (1993).

    Article  Google Scholar 

  15. S. A. Goss, R. L. Johnston, and F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J Acoust Soc Am64(2), 423–457 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. P. H. Nicholson and M. L. Bouxsein, “Effect of temperature on ultrasonic properties of the calcaneus in situ,” Osteoporos Int13(11), 888–892 (2002).

    Google Scholar 

  17. G. S. Kino,Acoustic Waves: Devised Imaging and Analog Signal(Prentice Hall, Englewood Cliffs, 1987).

    Google Scholar 

  18. R. B. Ashman, S. C. Cowin, W. C. Van Buskirk, and J. C. Rice, “A continuous wave technique for the mesurement of the elastic properties of cortical bone,” J Biomech17, 349–361 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. J. L. Katz, “Anisotropy of Young’s modulus of bone,” Nature283, 106–107 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. P. J. Arnoux, J. Bonnoit, P. Chabrand, M. Jean, and M. Pithioux, “Numerical damage models using a structural approach: application in bones and ligaments,” Eur Phys J Appl Phys17, 65–73 (2002).

    Article  Google Scholar 

  21. H. S. Yoon and J. L. Katz, “Ultrasonic wave propagation inhuman cortical bone - II. Measurements of elastic properties and microhardness,” J Biomech9, 459–464 (1976).

    Google Scholar 

  22. G. Haiat, S. Naili, Q. Grimal, M. Talmant, C. Desceliers, and C. Soize, “Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission,” J Acoust Soc Am.125(6), 4043–4052 (2009).

    Google Scholar 

  23. E. Bossy, M. Talmant, and P. Laugier, “Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models,” J Acoust Soc Am115(5 Pt 1), 2314–2324 (2004).

    Article  PubMed  Google Scholar 

  24. S. B. Lang, “Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones,” IEEE T Bio-med EngBME-17(2), 101–105 (1970).

    Google Scholar 

  25. L. Serpe and J. Y. Rho, “The nonlinear transition period of broadband ultrasonic attenuation as bone density varies,” J Biomech29, 963–966 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. D. Gazis, “Three-dimensional investigation of the propagation of waves in hollow circular cylinders.II. Numerical Results,” J Acoust Soc Am31(5), 573–578 (1959).

    Article  Google Scholar 

  27. I. Viktorov,Rayleigh and Lamb Waves(Plenum, New York, 1967).

    Google Scholar 

  28. P. Moilanen, “Ultrasonic guided waves in bone,” IEEE Trans Ultrason Ferroelectr Freq Control55(6), 1277–1286 (2008).

    Article  PubMed  Google Scholar 

  29. C. Hellmich and F. J. Ulm, “Micromechanical model for ultrastructural stiffness of mineralized tissues,” J Eng Mech128(8), 898–908 (2002).

    Article  Google Scholar 

  30. J. M. Crolet, B. Aoubiza, and A. Meunier, “Compact bone: numerical simulation of mechanical characteristics,” J Biomech26(6), 677–687 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. B. Aoubiza, J. M. Crolet, and A. Meunier, “On the mechanical characterization of compact bone structure using the homogenization theory,” J Biomech29(12), 1539–1547 (1996).

    CAS  PubMed  Google Scholar 

  32. C. Hellmisch and F. J. Ulm, “Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues,” J Eng Mech128(8), 898–908 (2002).

    Article  Google Scholar 

  33. A. Hosokawa, “Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot’s finite-difference time-domain methods,” J Acoust Soc Am118(3 Pt 1), 1782–1789 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. A. Hosokawa and T. Otani, “Acoustic anisotropy in bovine cancellous bone,” J Acoust Soc Am103(5), 2718–2722 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Z. E. Fellah, J. Y. Chapelon, S. Berger, W. Lauriks, and C. Depollier, “Ultrasonic wave propagation in human cancellous bone: application of Biot theory,” J Acoust Soc Am116(1), 61–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. E. R. Hughes, T. G. Leighton, G. W. Petley, P. R. White, and R. C. Chivers, “Estimation of critical and viscous frequencies for Biot theory in cancellous bone,” Ultrasonics41(5), 365–368 (2003).

    Article  PubMed  Google Scholar 

  37. K. I. Lee, H. S. Roh, and S. W. Yoon, “Correlations between acoustic properties and bone density in bovine cancellous bone from 0.5 to 2 MHz,” J Acoust Soc Am113(5), 2933–2938 (2003).

    Article  PubMed  Google Scholar 

  38. K. A. Wear, A. Laib, A. P. Stuber, and J. C. Reynolds, “Comparison of measurements of phase velocity in human calcaneus to Biot theory,” J Acoust Soc Am117(5), 3319–3324 (2005).

    Article  PubMed  Google Scholar 

  39. J. L. Williams, “Ultrasonic wave propagation in cancellous and cortical bone: Prediction of experimental results by Biot’s theory,” J Acoust Soc Am91(2), 1106–1112 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. E. R. Hubbuck, T. G. Leighton, P. R. White, and G. W. Petley, “A stratified model for ultrasonic propagation in cancellous bone,” presented at the Joint meeting of the 16th International Congress on Acoustics and the 135th Meeting of the Acoustical Society of America, Seattle, Washington, June 20–26, 1998.

    Google Scholar 

  41. E. R. Hughes, T. G. Leighton, G. W. Petley, and P. R. White, “Ultrasonic propagation in cancellous bone: a new stratified model,” Ultrasound Med Biol.25(5), 811–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. W. Lin, Y. X. Qin, and C. Rubin, “Ultrasonic wave propagation in trabecular bone predicted by the stratified model,” Ann Biomed Eng29(9), 781–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. F. Padilla and P. Laugier, “Phase and group velocities of fast and slow compressional waves in trabecular bone,” J Acoust Soc Am108(4), 1949–1952 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. K. A. Wear, “A stratified model to predict dispersion in trabecular bone,” IEEE Trans Ultrason Ferroelectr Freq Control48(4), 1079–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. A. Ishimaru,Wave Propagation and Scattering in Random Media(Wiley, NewYork, 1999).

    Google Scholar 

  46. P. P. Antich, J. A. Anderson, R. B. Ashman, J. E. Dowdey, J. Gonzales, R. C. Murry, J. E. Zerwekh, and C. Y. Pak, “Measurement of mechanical properties of bone material in vitro by ultrasound reflection: methodology and comparison with ultrasound transmission,” J Bone Miner Res6(4), 417–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. P. P. Antich, C. Y. C. Pak, J. Gonzales, J. A. Anderson, R. B. Ashman, K. Sakhaee, and C. Rubin, “Measurement of intrinsic bone quality in vivo by reflection ultrasound: correction of impaired quality with slow-release sodium fluoride and calcium citrate,” J Bone Miner Res8(3), 301–311 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. S. S. Mehta, P. P. Antich, M. M. Daphtary, D. G. Bronson, and E. Richer, “Bone material ultrasound velocity is predictive of whole bone strength,” Ultrasound Med Biol27(6), 861–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. J. C. Bamber,Physical Principles of Medical Ultrasonics(John Wiley & Sons, Chichester, UK, 1986).

    Google Scholar 

  50. K. S. Peat and R. Kirby, “Acoustic wave motion along a narrow cylindrical duct in the presence of an axial mean flow and temperature gradient,” J Acoust Soc Am107(4), 1859–1867 (2000).

    Article  PubMed  Google Scholar 

  51. E. Bossy, F. Padilla, F. Peyrin, and P. Laugier, “Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography,” Phys Med Biol50(23), 5545–5556 (2005).

    Article  PubMed  Google Scholar 

  52. K. A. Wear, “Mechanisms for attenuation in cancellous-bone-mimicking phantoms.,” IEEE Trans Ultrason Ferroelectr Freq Control55(11), 2418–2425 (2008).

    Article  PubMed  Google Scholar 

  53. T. L. Szabo,Diagnostic Ultrasound, Academic press series on biomedical engineering (Elsevier Academic Press, London, UK, 2004).

    Google Scholar 

  54. K. T. Dussik and D. J. Fritch, “Determination of sound attenuation and sound velocity in the structure constituting the joints, and of the ultrasonic field distribution with the joints of living tissues and anatomical preparations, both in normal and pathological conditions” (1956).

    Google Scholar 

  55. S. Chaffaï, F. Padilla, G. Berger, and P. Laugier, “In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2–2.0 MHz,” J Acoust Soc Am108, 1281–1289 (2000).

    Google Scholar 

  56. S. Han, J. Rho, J. Medige, and I. Ziv, “Ultrasound velocity and broadband attenuation over a wide range of bone mineral density,” Osteoporosis Int6, 291–296 (1996).

    Article  CAS  Google Scholar 

  57. C. M. Langton, S. B. Palmer, and S. W. Porter, “The measurement of broadband ultrasonic attenuation in cancellous bone,” Eng Med.13(2), 89–91 (1984).

    Article  CAS  PubMed  Google Scholar 

  58. R. Strelitzki and J. A. Evans, “Diffraction and interface losses in broadband ultrasound attenuation measurements of the calcaneus,” Physiol Meas19, 197–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. K. A. Wear, “Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz,” IEEE Trans Ultrason Ferroelectr Freq Control48(2), 602–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. J. W. S. Rayleigh and R. B. Lindsay,Theory of Sound(Macmillan, London, UK, 1878).

    Google Scholar 

  61. P. Morse and K. Ingard,Theoretical Acoustics(Princetown University Press, Princetown, NJ, 1986).

    Google Scholar 

  62. J. C. Bamber, “Ultrasonic properties of tissue,” inUltrasound in medicine, F. A. Duck, A. C. Baker, and A. C. Starritt, eds. (Institute of Physics Publishing, Bristol, UK, 1998).

    Google Scholar 

  63. G. Haiat, A. Lhemery, F. Renaud, F. Padilla, P. Laugier, and S. Naili, “Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption,” J Acoust Soc Am124(6), 4047–4058 (2008).

    Google Scholar 

  64. K. A. Wear, “Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment,” J Acoust Soc Am106(6), 3659–3664 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Laugier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Laugier, P., Haïat, G. (2011). Introduction to the Physics of Ultrasound. In: Laugier, P., Haïat, G. (eds) Bone Quantitative Ultrasound. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0017-8_2

Download citation

Publish with us

Policies and ethics