Skip to main content

Cyanobacteria in Geothermal Habitats

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

In the last decade advances in high-throughput DNA and RNA sequencing have driven more intensive surveys of cyanobacterial diversity in geothermal systems worldwide and the development of a deeper understanding of well-studied hot spring cyanobacterial communities. As a consequence, it is now possible to build, atop the long-term studies of these systems based on morphological, pure-culture and initial 16S rRNA observations, a more thorough understanding of the biogeographical and local distributions of cyanobacteria in these settings. Population genetics studies with increased molecular, spatial and temporal resolution have begun to define the ecological species populations of thermophilic cyanobacteria and to reveal the processes that drove their evolution and current ecology. Metagenomic studies have begun to reveal the functional gene repertoire of the predominant cyanobacteria and associated members of communities in which they reside and with whom they interact. Gene expression studies, including metatranscritomic studies, have begun to reveal patterns of in situ gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams MM, Gómez-García MR, Grossman AR, Bhaya D (2008) Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats. J Bacteriol 190:8171–8184

    Article  PubMed  CAS  Google Scholar 

  • Allewalt JP, Bateson MM, Revsbech NP, Slack K, Ward DM (2006) Effect of temperature and light on growth and photosynthesis of Synechococcus isolates typical of those predominating in the Octopus Spring microbial mat community. Appl Environ Microbiol 72:544–550

    Article  PubMed  CAS  Google Scholar 

  • Anderson KL, Tayne TA, Ward DM (1987) Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl Environ Microbiol 53:2343–2352

    PubMed  CAS  Google Scholar 

  • Anitori RP, Trott C, Saul DJ, Bergquist PL, Walter MR (2002) A culture-independent survey of the bacterial community in a radon hot spring. Astrobiology 2:255–270

    Article  PubMed  CAS  Google Scholar 

  • Awramik SM, Vanyo JP (1986) Heliotropism in modern stromatolites. Science 231:1279–1281

    Article  PubMed  CAS  Google Scholar 

  • Banerjee M, Everroad RC, Castenholz RW (2009) An unusual cyanobacterium from saline thermal waters with relatives from unexpected habitats. Extremophiles 13:707–716

    Article  PubMed  Google Scholar 

  • Bateson MM, Ward DM (1988) Photoexcretion and consumption of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54:1738–1743

    PubMed  CAS  Google Scholar 

  • Becraft ED, Cohan FM, Kühl M, Jensen S, Ward DM (2011) Fine-scale distribution patterns of Synechococcus ecological diversity in microbial mats of Mushroom Spring, Yellowstone National Park. Appl Environm Microbiol 77:7689–7697

    Google Scholar 

  • Becraft ED, Cohan FM, Wood JM, Ward DM (2012) Pyrosequencing analyses of Synechococcus ecological species inhabiting the microbial mat of Mushroom Spring, Yellowstone National Park (in preparation)

    Google Scholar 

  • Bhaya D, Grossman AR, Steunou A-S, Khuri N, Cohan FM, Hamamura N, Melendrez MC, Nelson W, Bateson MM, Ward DM, Heidelberg JF (2007) Population level functional diversity in a microbial community revealed by comparative genomic and meta­genomic analyses. ISME J 1:703–713

    Article  PubMed  CAS  Google Scholar 

  • Bosak T, Liang B, Sim MS, Petroff AP (2009) Morphological record of oxygenic photosynthesis in conical stromatolites. Proc Natl Acad Sci USA 106:10939–10943

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179:480–483

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Klatt CG, Frigaard N-U, Liu Z, Li T, Zhao F, Garcia Costas AM,Overmann J, Ward DM (2012) Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. In: Burnap RJ, Vermaas W (eds) Functional Genomics and Evolution of Photosynthetic Systems Springer, Dordrecht, The Netherlands, Vol. 33, pp 47–102

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin, 465 pp

    Book  Google Scholar 

  • Castenholz RW (1968) The behavior of Oscillatoria terebriformis in hot springs. J Phycol 4:132–139

    Article  Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504

    PubMed  CAS  Google Scholar 

  • Castenholz RW (1973a) Ecology of blue-green algae in hot springs. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell/University of California Press, Oxford/Berkeley, pp 379–414, 676 pp

    Google Scholar 

  • Castenholz RW (1973b) The possible use of sulfide by the filamentous phototrophic bacteria of hot springs. Limnol Oceanogr 18:863–867

    Article  CAS  Google Scholar 

  • Castenholz RW (1976) The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland. J Phycol 12:54–68

    CAS  Google Scholar 

  • Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb Ecol 3:79–105

    Article  CAS  Google Scholar 

  • Castenholz RW (1978) The biogeography of hot spring algae through enrichment cultures. Mitt Int Ver Limnol 21:296–315

    Google Scholar 

  • Castenholz RW (1992) Species usage, concept, and evolution in the cyanobacteria (blue green algae). J Phycol 28:737–745

    Article  Google Scholar 

  • Castenholz RW (1996) Endemism and biodiversity of thermophilic cyanobacteria. Nova Hedwig Beih 112:33–47

    Google Scholar 

  • Castenholz RW, Utkilen HC (1984) Physiology of sulfide tolerance in a thermophilic cyanobacterium. Arch Microbiol 138:306–309

    Article  CAS  Google Scholar 

  • Cohan FM, Perry EB (2007) A systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17:R373–R386

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y, Jørgensen BB, Revsbeck NP, Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407

    PubMed  CAS  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381

    PubMed  CAS  Google Scholar 

  • Ferris MJ, Ruff-Roberts AL, Kopczynski ED, Bateson MM, Ward DM (1996) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 62:1045–1050

    PubMed  CAS  Google Scholar 

  • Ferris MJ, Nold SC, Revsbech NP, Ward DM (1997) Population structure and physiological changes within a hot spring microbial mat community following disturbance. Appl Environ Microbiol 63:1367–1374

    PubMed  CAS  Google Scholar 

  • Ferris MJ, Kühl M, Wieland A, Ward DM (2003) Different light-adapted ecotypes in a 68°C Synechococcus mat community revealed by analysis of 16S-23S intervening transcribed spacer variation. Appl Environ Microbiol 69:2893–2898

    Article  PubMed  CAS  Google Scholar 

  • Finlay B (2002) Global dispersal of free-living microbial species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1990) Comparative anoxygenic photosynthetic capacity in 7 strains of a thermophilic cyanobacterium. Arch Microbiol 153:344–351

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Revsbech NP, Ward DM, Castenholz RW (1987) Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats. Arch Microbiol 147:80–89

    Article  CAS  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, RdeM J, Fouke BW, Reysenbach A-L, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:e9773

    Article  PubMed  CAS  Google Scholar 

  • Ionescu D, Hindiyeh M, Malkawi H, Oren A (2010) Biogeography of thermophilic cyanobacteria: insights from the Zerka Ma’in hot springs (Jordan). FEMS Microbiol Ecol 72:103–113

    Article  PubMed  CAS  Google Scholar 

  • Jensen SI, Steunou A-S, Bhaya D, Kühl M, Grossman AR (2010) In situ dynamics of O2, pH and cyanobacterial transcripts associated with CCM, photosynthesis and detoxification of ROS. ISME J 5:317–328

    Article  PubMed  CAS  Google Scholar 

  • Jing H, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U, Pointing SB (2005) Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles 9:325–332

    Article  CAS  Google Scholar 

  • Jørgensen BB, Nelson DC (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microb Ecol 16:133–147

    Article  Google Scholar 

  • Kallas T, Castenholz RW (1982a) Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J Bacteriol 149:229–236

    PubMed  CAS  Google Scholar 

  • Kallas T, Castenholz RW (1982b) Rapid transient growth at low pH in the cyanobacterium Synechococcus sp. J Bacteriol 149:237–246

    PubMed  CAS  Google Scholar 

  • Kilian O, Steunou A-S, Fazeli F, Bailey S, Bhaya D, Grossman AR (2007) Responses of a thermophilic Synechococcus isolate from the microbial mat of Octopus Spring to light. Appl Environ Microbiol 73:4268–4278

    Article  PubMed  CAS  Google Scholar 

  • Klatt CG, Bryant DA, Ward DM (2007) Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats. Environ Microbiol 9:2067–2078

    Article  PubMed  CAS  Google Scholar 

  • Klatt CG, Liu Z, Ludwig M, Kuhl M, Jensen SI, Bryant DA, Ward DM (2012a) Temporal patterning of in situ gene expression in uncultivated phototrophic Chloroflexi inhabiting a microbial mat in an alkaline siliceous geothermal spring (in preparation)

    Google Scholar 

  • Klatt, CG, Inskeep, WP, Herrgard, M, Rusch, DB, Tringe, SG, Jay, Z, Parenteau, MN, Ward, DM, Boomer, SM, Bryant, DA, Miller, SR. (2012b) Comparative analysis of community structure and function among phototrophic microbial mats inhabiting diverse geothermal environments (in preparation)

    Google Scholar 

  • Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N, Heidelberg JF, Grossman AR, Bhaya D, Cohan FM, Kühl M, Bryant DA, Ward DM (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J. 5:1262–1278

    Google Scholar 

  • Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP, Brambilla E, Connor N, Nevo E, Ratcliff RM, Cohan FM (2008) Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecological diversification into bacterial systematics. Proc Natl Acad Sci USA 105:2504–2509

    Article  PubMed  CAS  Google Scholar 

  • Konopka A (1992) Accumulation and utilization of polysaccharide by hot-spring phototrophs during a light-dark transition. FEMS Microbiol Ecol 102:27–32

    Article  CAS  Google Scholar 

  • Külköylüoglu O, Meisch C, Rust RW (2003) Thermopsis thermophila n. gen. n. sp. from hot springs in Nevada (Crustacea, Ostracoda). Hydrobiologia 499:113–123

    Article  Google Scholar 

  • Lacap DC, Barraquio W, Pointing SB (2007) Thermophilic microbial mats in a tropical geothermal location display pronounced seasonal changes but appear resilient to stochastic disturbance. Environ Microbiol 9:3065–3076

    Article  PubMed  CAS  Google Scholar 

  • Lau E, Nash CZ, Vogler DR, Cullings KW (2005) Molecular diversity of cyanobacteria inhabiting coniform structures and surrounding mat in a Yellowstone hot spring. Astrobiology 5:83–92

    Article  PubMed  CAS  Google Scholar 

  • Lau CY, Aitchison JC, Pointing SB (2006) Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress. FEMS Microbiol Ecol 57:80–91

    Article  CAS  Google Scholar 

  • Lau CY, Aitchison JC, Pointing SB (2008) Early colonization of thermal niches in a silica-depositing hot spring in central Tibet. Geobiology 6:136–146

    Article  PubMed  CAS  Google Scholar 

  • Lau MCY, Aitchison JC, Pointing SB (2009) Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles 13:139–149

    Article  PubMed  Google Scholar 

  • Liu X, Klatt CG, Ludwig M, Rusch DB, Jensen SI, Kuhl M, Ward DM, Bryant DA (2012) “Candidatus Thermochlorobacter aerophilum:” an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J. (in press)

    Google Scholar 

  • Liu Z, Klatt CG, Wood JM, Rusch DB, Ludwig M, Wittekindt N, Tomsho LP, Schuster SC, Ward DM, Bryant DA (2011) Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. ISME J 5(8):1279–1290. doi:10.1038/ismej.2011.37

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Mariner RH, Rapp JB, Willey LM, Presser TM (1974) The chemical composition and estimated minimum thermal reservoir temperatures of selected hot springs in Oregon. US Geological Survey open file report, Mar 1994, Menlo Park, CA, 27 pp

    Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Castenholz RW (1971) Growth and photosynthesis in an extreme thermophile, Synechococcus lividus (Cyanophyta). Arch Mikrobiol 78:25–41

    Article  PubMed  CAS  Google Scholar 

  • Melendrez MC, Cohan FM, Ward DM (2012) Cultivation-independent multi-locus sequence analysis of the impact of recombination on Synechococcus species populations inhabiting a hot spring cyanobacterial mat (in preparation)

    Google Scholar 

  • Melendrez MC, Lange RC, Cohan FM, Ward DM (2011) Influence of molecular resolution on sequence-based discovery of ecological diversity among Synechococcus populations in an alkaline siliceous hot spring microbial mat. Appl Environ Microbiol 77(4):1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Miller SR (2007) Diversity of the cosmopolitan thermophile Mastigocladus laminosis at global, regional, and local scales. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 399–410

    Chapter  Google Scholar 

  • Miller SR (2010) Population genetics of cyanobacteria. In: Xu J (ed) Microbial population genetics. Caister Academic Press, Norfolk, pp 97–107

    Google Scholar 

  • Miller SR, Castenholz RW (2000) Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Appl Environ Microbiol 66:4222–4229

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Wingard CE, Castenholz RW (1998) Effects of visible light and UV radiation on photosynthesis in a population of a hot spring cyanobacterium, a Synechococcus sp., subjected to high-temperature stress. Appl Environ Microbiol 64:3893–3899

    PubMed  CAS  Google Scholar 

  • Miller SR, Purugganan MD, Curtis SE (2006) Molecular population genetics and phenotypic diversification of two populations of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 72:2793–2800

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Castenholz RW, Pedersen D (2007) Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 73:4751–4759

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Strong AL, Jones KL, Ungerer MC (2009a) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Williams C, Strong AL, Carvey D (2009b) Ecological specialization in a spatially structured population of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 75:729–734

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896

    PubMed  CAS  Google Scholar 

  • Nold SC, Ward DM (1996) Photosynthate partitioning and fermentation in hot spring microbial mat communities. Appl Environ Microbiol 62:4598–4607

    PubMed  CAS  Google Scholar 

  • Norris TB, McDermott TD, Castenholz RW (2002) The long term effects of UV exclusion on the microbial composition and photosynthetic competence of bacteria in hot spring microbial mats. FEMS Microbiol Ecol 39:193–209

    Article  PubMed  CAS  Google Scholar 

  • Nübel U, Bateson MM, Vandieken V, Kühl M, Ward DM (2002) Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats. Appl Environ Microbiol 68:4593–4603

    Article  PubMed  CAS  Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659

    Article  PubMed  CAS  Google Scholar 

  • Peary JA, Castenholz RW (1964) Temperature strains of a thermophilic blue-green alga. Nature 202:720–721

    Article  Google Scholar 

  • Portillo MC, Sririn V, Kanoksilapatham W, Gonzalez JM (2009) Differential microbial communities in hot spring mats from Western Thailand. Extremophiles 13:321–331

    Article  PubMed  CAS  Google Scholar 

  • Ramsing NB, Ferris MJ, Ward DM (2000) Highly ordered vertical structure of Synechococcus populations within the one-millimeter thick photic zone of a hot spring cyanobacterial mat. Appl Environ Microbiol 66:1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Revsbech NP, Ward DM (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48:270–275

    PubMed  CAS  Google Scholar 

  • Roeselers G, Norris TB, Castenholz RW, Rysgaard S, Glud RN, Kühl M, Muyzer G (2007) Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Environ Microbiol 9:26–38

    Article  PubMed  CAS  Google Scholar 

  • Sandbeck KA, Ward DM (1981) Fate of immediate methane precursors in low sulfate hot spring algal-bacterial mats. Appl Environ Microbiol 41:775–782

    PubMed  CAS  Google Scholar 

  • Sompong U, Hawkins PR, Besley C, Peerapornpisal Y (2008) The distribution of cyanobacteria across physical and chemical gradients in hot springs in northern Thailand. FEMS Microbiol Ecol 52:365–376

    Article  CAS  Google Scholar 

  • Sorokovikova EG, Tikhonova IV, Belykh OI, Klimenkov IV, Likhoshwai EV (2008) Identification of two cyanobacterial strains isolated from the Kotel’nikovskii hot spring of the Baikal rift. Microbiology 77:365–372

    Article  CAS  Google Scholar 

  • Steunou A-S, Bhaya D, Bateson MM, Melendrez MC, Ward DM, Brecht E, Peters JW, Kühl M, Grossman AR (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci USA 103:2398–2403

    Article  PubMed  CAS  Google Scholar 

  • Steunou A-S, Jensen SI, Brecht E, Becraft ED, Bateson MM, Kilian O, Bhaya D, Ward DM, Peters JW, Grossman AR, Kühl M (2008) Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat. ISME J 2:364–378

    Article  PubMed  CAS  Google Scholar 

  • Stewart WDP (1970) Nitrogen fixation by blue-green algae in Yellowstone thermal areas. Phycologia 9:261–268

    Article  CAS  Google Scholar 

  • van der Meer MTJ, Schouten S, de Leeuw JW, Ward DM (2000) Autotrophy of green non-sulphur bacteria in hot spring microbial mats: biological explanations for isotopically heavy organic carbon in the geological record. Environ Microbiol 2:428–435

    Article  PubMed  Google Scholar 

  • van der Meer MTJ, Schouten S, Sinninghe-Damsté JS, de Leeuw JW, Ward DM (2003) Compound-specific isotopic fractionation patterns suggest different carbon metabolisms among Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 69:6000–6006

    Article  PubMed  CAS  Google Scholar 

  • van der Meer MTJ, Schouten S, Bateson MM, Nübel U, Wieland A, Kühl M, de Leeuw JW, Sinninghe-Damsté JS, Ward DM (2005) Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline silicious hot spring microbial mats from Yellowstone National Park, U.S.A. Appl Environ Microbiol 71:3978–3986

    Article  PubMed  CAS  Google Scholar 

  • van der Meer MTJ, Schouten S, Sinninghe Damsté JS, Ward DM (2007) Impact of carbon metabolisms on 13C signatures of cyanobacteria and green nonsulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA). Environ Microbiol 9:482–491

    Article  PubMed  CAS  Google Scholar 

  • van der Meer MTJ, Klatt CG, Wood J, Bryant DA, Bateson MM, Lammerts L, Schouten S, Sinninghe Damsté JS, Madigan MT, Ward DM (2010) Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J Bacteriol 192:3033–3042

    Article  PubMed  CAS  Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239

    Article  Google Scholar 

  • Vanyo JP, Hutchinson RA, Awramik SM (1986) Heliotropism in microbial stromatolitic growths at Yellowstone National Park: geophysical inferences. EOS 67:153–156

    Article  Google Scholar 

  • Walter MR, Bauld J, Brock TD (1972) Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park. Science 178:402–405

    Article  PubMed  CAS  Google Scholar 

  • Ward DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1:271–277

    Article  PubMed  CAS  Google Scholar 

  • Ward DM, Castenholz RW (2000) Cyanobacteria in geothermal habitats. In: Potts M, Whitton BA (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 37–59, 669 pp

    Google Scholar 

  • Ward DM, Cohan FM (2005) Microbial diversity in hot spring cyanobacterial mats: pattern and prediction. In: Inskeep B, McDermott T (eds) Geothermal biology and geochemistry in Yellowstone National Park. Thermal Biology Institute, Montana State University, Bozeman, pp 185–201

    Google Scholar 

  • Ward DM, Tayne TA, Anderson KL, Bateson MM (1987) Community structure, and interactions among community members in hot spring cyanobacterial mats. Symp Soc Gen Microbiol 41:179–210

    CAS  Google Scholar 

  • Ward DM, Bateson MM, Ferris MJ, Nold SC (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    PubMed  CAS  Google Scholar 

  • Ward DM, Bateson MM, Ferris MJ, Kühl M, Wieland A, Koeppel A, Cohan FM (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function. Philos Trans R Soc Lond B 361:1997–2008

    Article  Google Scholar 

  • Ward DM, Cohan FM, Bhaya D, Heidelberg JF, Kühl M, Grossman A (2008) Genomics, environmental genomics and the issue of microbial species. Heredity 100:207–219

    Article  PubMed  CAS  Google Scholar 

  • Ward DM, Klatt CG, Wood J, Cohan FM, Bryant DA (2012) Functional genomics in an ecological and evolutionary context: maximizing the value of genomes in systems biology. In: Burnap RL, Vermaas W (eds) Functional genomics and evolution of photosynthetic systems, vol 33. Springer, Dordrecht, pp. 1–16

    Google Scholar 

  • Ward DM, Melendrez MC, Becraft ED, Klatt CG, Wood J, Cohan FM (2011) Metagenomic approaches for the identification of microbial species. In: de Bruijn FJ (ed) Handbook of molecular microbial ecology I: metagenomics and complementary approaches. Wiley, Hoboken, pp. 105–109

    Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic Archaea. Science 301:976–978

    Article  PubMed  CAS  Google Scholar 

  • Wickstrom CE (1980) Distribution and physiological determinants of blue-green algal nitrogen fixation along a thermogradient. J Phycol 16:436–443

    Article  CAS  Google Scholar 

  • Wickstrom CE, Castenholz RW (1973) Thermophilic ostracod: aquatic metazoan with highest known temperature tolerance. Science 181:1063–1064

    Article  PubMed  CAS  Google Scholar 

  • Wickstrom CE, Castenholz RW (1978) Association of Pleurocapsa and Calothrix (Cyanophyta) in a thermal stream. J Phycol 14:84–88

    Article  Google Scholar 

  • Wickstrom CE, Castenholz RW (1985) Dynamics of cyanobacterial and ostracod interactions in an Oregon hot spring. Ecology 66:1024–1041

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

  • Yim LC, Hongmei J, Aitchison JC, Pointing SB (2006) Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress. FEMS Microbiol Ecol 57:80–91

    Google Scholar 

  • Yun Z (1986) Thermophilic microorganisms in the hot springs of Tengchong geothermal area, West Yunnan, China. Geothermics 15:347–358

    Article  Google Scholar 

Download references

Acknowledgements

DMW appreciates the long-term support from the National Science Foundation (most recently from the Frontiers in Integrative Biology Research Program, EF- EF-0328698 and the IGERT Program in Geobiological Systems, DGE 0654336), the National Aeronautics and Space Administration (most recently from the Exobiology Program, NAG5-8824, -8807 and NX09AM87G), the Battelle Memorial Institute, Pacific Northwest Division [contract #112443] and the National Park Service personnel at Yellowstone National Park. DMW additionally and gratefully acknowledges collaborators D.A. Bryant and X. Liu and the support of collaborative genomic and metatranscriptomic work from the National Science Foundation (MCB-0523100), Dept. of Energy (DE-FG02-94ER20137) and the Joint Genome Institute. SRM gratefully acknowledges the support of National Science Foundation awards MCB-0354738, MCB0347627 and EF-0801999. RWC gratefully acknowledges the support of the National Science Foundation and NASA over many years of geothermal biological studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ward, D.M., Castenholz, R.W., Miller, S.R. (2012). Cyanobacteria in Geothermal Habitats. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_3

Download citation

Publish with us

Policies and ethics