Skip to main content

Part of the book series: Synthese Library ((SYLI,volume 306))

Abstract

Brouwer’s Continuity Principle distinguishes intuitionistic mathematics from other varieties of constructive mathematics, giving it its own flavour. We discuss the plausibility of this assumption and show how it is used. We explain how one may understand its consequences even if one hesitates to accept it as an axiom.

In memory of Johan J. de Iongh (1915–1999)

Trying to learn to use words, and every attempt Is a wholly new start, and a different kind of failure

T.S. Eliot, East Coker, V, 1940

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.E.J. Brouwer (1918), Begründung der Mengenlehre unabhängig vom logischen Satz vorn ausgeschlossenen Dritten. Erster Teil: Allgemeine Mengenlehre. Koninklijke Nederlandsche Akademie van Wetenschappen, Verhandelingen, le sectie 12 no. 5, 43 p. Also: Brouwer 1975, pp. 150–190, with footnotes, pp. 573–585.

    Google Scholar 

  2. L.E.J. Brouwer (1927), Über Definitionsbereiche von Funktionen,Math. Annalen 97, pp. 60–75. (English translation of §§1–3 in: van Heijenoort 1967, pp. 446–463, with an introduction by Charles Parsons, see especially footnote g, page 448).

    Google Scholar 

  3. L.E.J. Brouwer (1975), Collected Works, Vol. I. Philosophy and Foundations of Mathematics, ed. A. Heyting, (North-Holland Publ. Co., Amsterdam etc.).

    Google Scholar 

  4. L.E.J. Brouwer (1991), Intuitionismus,herausgegeben, eingeleitet und kommentiert von D. van Dalen, (Wissenschaftsverlag Mannheim etc.)

    Google Scholar 

  5. J. van Heijenoort (1967), From Frege to Gödel, A Source Book in Mathematical Logic, ( Harvard University Press, Cambridge Mass. )

    MATH  Google Scholar 

  6. A. Heyting (1952/53), Inleiding tot de Intuïtionistische Wiskunde,College uitgewerkt door J.J. de Iongh, (Introduction to Intuitionistic Mathematics, Course Notes elaborated by J.J. de Iongh), s.n.

    Google Scholar 

  7. S.C. Kleene and R.E. Vesley (1965), The Foundations of Intuitionistic Mathematics, especially in relation to Recursive Functions, (North-Holland Publ. Co., Amsterdam etc. )

    MATH  Google Scholar 

  8. A.S. Troelstra and D. van Dalen (1988), Constructivism in Mathematics, volume I, ( North-Holland Publ. Co., Amsterdam etc. ).

    Google Scholar 

  9. W. Veldman (1981), Investigations in Intuitionistic Hierarchy Theory, Ph.D. Thesis, Katholieke Universiteit Nijmegen.

    Google Scholar 

  10. W. Veldman (1982) On the continuity of functions in intuitionistic real analysis, Report 8210, Department of Mathematics, Katholieke Universiteit Nijmegen.

    Google Scholar 

  11. W. Veldman (1990), A survey of intuitionistic descriptive set theory in P.P. Petkov (ed.), Mathematical Logic, Proceedings of the Heyting Conference 1988, ( Plenum Press, New York and London ), pp. 155–174.

    Google Scholar 

  12. W. Veldman (1995), Some intuitionistic variations on the notion of a finite set of natural numbers, in: H.C.M. de Swart, L.J.M. Bergmans (ed.), Perspectives on Negation, essays in honour of Johan J. de Iongh on the occasion of his 80th birthday, ( Tilburg University Press, Tilburg ), pp. 177–202.

    Google Scholar 

  13. W. Veldman (1999A), On sets enclosed between a set and its double complement, in: A. Cantini e.a. (ed.), Logic and Foundations of Mathematics, Proceedings Xth International Congress on Logic, Methodology and Philosophy of Science, Florence 1995, Volume III, ( Kluwer Academic Publishers, Dordrecht etc. ), pp. 143–154.

    Google Scholar 

  14. W. Veldman (1999B), The Borel hierarchy in intuitionistic mathematics,Report 9930, Department of Mathematics, Katholieke Universiteit Nijmegen, submitted for publication to: Annals of Pure and Applied Logic.

    Google Scholar 

  15. W. Veldman and M. Jansen (1990), Some observations on intuitionistically elementary properties of linear orderings, Archive for Mathematical Logic, vol. 29, pp. 171–187.

    Google Scholar 

  16. W. Veldman and F. Waaldijk (1996), Some elementary results in intuitionistic model theory, Journal of Symbolic Logic, vol. 61, pp. 745–767

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Veldman, W. (2001). Understanding and Using Brouwer’s Continuity Principle. In: Schuster, P., Berger, U., Osswald, H. (eds) Reuniting the Antipodes — Constructive and Nonstandard Views of the Continuum. Synthese Library, vol 306. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9757-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9757-9_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5885-0

  • Online ISBN: 978-94-015-9757-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics