Skip to main content

Atomic Force Microscopy Study of the Interaction of DNA and Nanoparticles

  • Chapter
  • First Online:
Nanomaterial

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 811))

Abstract

The interaction between nanoparticles (NPs) and DNA plays an important role in the genotoxicity of NPs, and it is imperative to characterize the nano/DNA interactions and explore the underlying chemical mechanisms. In this chapter, we demonstrated systematic experimental approaches based on atomic force microscope (AFM), coupled with modeling computation to probe the binding activity of NPs with DNA and the putative genotoxicity. Using quantum dots (QDs) as a model NP, we examined the binding kinetics, binding isotherm, binding specificity, and binding mechanisms of NPs to DNA with the application of AFM. We further assessed the binding affinity between NPs and DNA by calculating their interaction energy on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) models. The modeling results of binding affinity were validated by the NPs/DNA binding images experimentally derived by AFM. The investigation of the relationship between the binding affinity of five NPs ((QDs (+), QDs (−), silver NPs, hematite NPs, and gold NPs) for DNA with their inhibition effects on DNA replication indicated that NPs with a high binding affinity for DNA molecules exhibited higher inhibition on DNA replication. The methodology employed in this study can be extended to study the interaction of other NPs with DNA, which is anticipated to benefit the future design of safe NPs, as well as the toxicological investigations of NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An HJ, Jin B (2012) Prospects of nanoparticle-DNA binding and its implications in medical biotechnology. Biotechnol Adv 30:1721–1732

    Article  CAS  PubMed  Google Scholar 

  2. An HJ, Liu QD, Ji QL, Jin B (2010) DNA binding and aggregation by carbon nanoparticles. Biochem Biophys Res Commun 393:571–576

    Article  CAS  PubMed  Google Scholar 

  3. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  4. Yang WJ, Shen CC, Ji QL, An HJ, Wang JJ, Liu QD, Zhang ZZ (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20:0851-02

    Article  Google Scholar 

  5. Allen MJ, Bradbury EM, Balhorn R (1997) AFM analysis of DNA-protamine complexes bound to mica. Nucleic Acids Res 25:2221–2226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Alonso-Sarduy L, Roduit C, Dietler G, Kasas S (2011) Human topoisomerase II-DNA interaction study by using atomic force microscopy. FEBS Lett 585:3139–3145

    Article  CAS  PubMed  Google Scholar 

  7. Hansma HG (2001) Surface biology of DNA by atomic force microscopy. Annu Rev Phys Chem 52:71–92

    Article  CAS  PubMed  Google Scholar 

  8. Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47:206–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pastre D, Hamon L, Sorel I, Le Cam E, Curmi PA, Pietrement O (2010) Specific DNA-protein interactions on mica investigated by atomic force microscopy. Langmuir 26:2618–2623

    Article  CAS  PubMed  Google Scholar 

  10. Tessmer I, Moore T, Lloyd RG, Wilson A, Erie DA, Allen S, Tendler SJB (2005) AFM studies on the role of the protein RdgC in bacterial DNA recombination. J Mol Biol 350:254–262

    Article  CAS  PubMed  Google Scholar 

  11. An H, Jin B (2011) DNA exposure to buckminsterfullerene (C-60): toward DNA stability, reactivity, and replication. Environ Sci Tech 45:6608–6616

    Article  CAS  Google Scholar 

  12. Li KG, Zhang W, Chen YS (2013) Quantum dot binding to DNA: single-molecule imaging with atomic force microscopy. Biotechnol J 8(1):110–116

    Google Scholar 

  13. Zhang W, Yao Y, Chen YS (2011) Imaging and quantifying the morphology and nanoelectrical properties of quantum dot nanoparticles interacting with DNA. J Phys Chem C 115:599–606

    Article  CAS  Google Scholar 

  14. Butt H-J, Graf K, Kappl M (2003) Physics and chemistry of interfaces. Wiley-VCH, Weinheim

    Book  Google Scholar 

  15. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59: 1–152

    Article  CAS  Google Scholar 

  16. Considine RF, Drummond CJ (2001) Surface roughness and surface force measurement: a comparison of electrostatic potentials derived from atomic force microscopy and electrophoretic mobility measurements. Langmuir 17:7777–7783

    Article  CAS  Google Scholar 

  17. Zhang W, Stack AG, Chen YS (2011) Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM. Colloids Surf B Biointerfaces 82:316–324

    Article  CAS  PubMed  Google Scholar 

  18. Blanchard BJ, Thomas VL, Ingram VM (2002) Mechanism of membrane depolarization caused by the Alzheimer A beta 1–42 peptide. Biochem Biophys Res Commun 293:1197–1203

    Article  CAS  PubMed  Google Scholar 

  19. Oh YJ, Jo W, Yang Y, Park S (2007) Biofilm formation and local electrostatic force characteristics of Escherichia coli O157: H7 observed by electrostatic force microscopy. Applied Physics Letters 90:143901–143903

    Article  Google Scholar 

  20. Sun L, Wang JJ, Bonaccurso E (2010) Nanoelectronic properties of a model system and of a conjugated polymer: a study by Kelvin probe force microscopy and scanning conductive torsion mode microscopy. J Phys Chem C 114:7161–7168

    Article  CAS  Google Scholar 

  21. Zhang W, Hughes J, Chen YS (2012) Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells. Appl Environ Microbiol 78:3905–3915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Muller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends in Biology 21:433–498

    Google Scholar 

  23. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  CAS  PubMed  Google Scholar 

  24. Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101:14036–14039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    Article  CAS  Google Scholar 

  26. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  27. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Qi LF, Gao XH (2008) Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv 5:263–267

    Article  CAS  PubMed  Google Scholar 

  29. Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun (Camb) 1:121–123

    Article  Google Scholar 

  30. Leung C, Maradan D, Kramer A, Howorka S, Mesquida P, Hoogenboom BW (2010) Improved Kelvin probe force microscopy for imaging individual DNA molecules on insulating surfaces. Appl Phys Lett 97:203703

    Article  Google Scholar 

  31. Guthold M, Zhu XS, Rivetti C, Yang GL, Thomson NH, Kasas S, Hansma HG, Smith B, Hansma PK, Bustamante C (1999) Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys J 77:2284–2294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lyubchenko YL, Shlyakhtenko LS (1997) Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A 94:496–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Stark M, Moller C, Muller DJ, Guckenberger R (2001) From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. Biophys J 80:3009–3018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mahtab R, Harden HH, Murphy CJ (2000) Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”-DNA interactions. J Am Chem Soc 122:14–17

    Article  CAS  Google Scholar 

  35. Mahtab R, Sealey SM, Hunyadi SE, Kinard B, Ray T, Murphy CJ (2007) Influence of the nature of quantum dot surface cations on interactions with DNA. J Inorg Biochem 101:559–564

    Article  CAS  PubMed  Google Scholar 

  36. Zhao YD, Xu Q, Wang JH, Wang Z, Yin ZH, Yang Q (2008) Interaction of CdTe quantum dots with DNA. Electrochem Commun 10:1337–1339

    Article  Google Scholar 

  37. Yang Y, Sass LE, Du CW, Hsieh P, Erie DA (2005) Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res 33:4322–4334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Winter RB, Berg OG, Vonhippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic-acids. 3. The Escherichia-coli-Lac repressor-operator interaction – kinetic measurements and conclusions. Biochemistry 20:6961–6977

    Article  CAS  PubMed  Google Scholar 

  39. Schofield MJ, Brownewell FE, Nayak S, Du CW, Kool ET, Hsieh P (2001) The Phe-X-Glu DNA binding motif of MutS – the role of hydrogen bonding in mismatch recognition. J Biol Chem 276:45505–45508

    Article  CAS  PubMed  Google Scholar 

  40. Harries D (1998) Solving the Poisson-Boltzmann equation for two parallel cylinders. Langmuir 14: 3149–3152

    Article  CAS  Google Scholar 

  41. Manning GS (2006) The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophys J 91:3607–3616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Derjaguin B, Sidorenkov G (1941) Thermoosmosis at ordinary temperatures and its analogy with the thermomechanical effect in helium II. C R Acad Sci De L Urss 32:622–626

    Google Scholar 

  43. Hoek EMV, Agarwal GK (2006) Extended DLVO interactions between spherical particles and rough surfaces. J Colloid Interface Sci 298:50–58

    Article  CAS  PubMed  Google Scholar 

  44. Verwey EJW, Overbeek JTG, van Nes K (1948) Theory of the stability of lyophobic colloids; the interaction of sol particles having an electric double layer. Elsevier Pub. Co., New York

    Google Scholar 

  45. Li KG, Chen YS (2012) Evaluation of DLVO interaction between a sphere and a cylinder. Colloids Surf A Physicochem Eng Asp 415:218–229

    Google Scholar 

  46. Schellman JA, Stigter D (1977) Electrical double-layer, zeta potential, and electrophoretic charge of double-stranded DNA. Biopolymers 16:1415–1434

    Article  CAS  PubMed  Google Scholar 

  47. Sharp KA, Honig B (1990) Electrostatic interactions in macromolecules – theory and applications. Annu Rev Biophys Biophys Chem 19:301–332

    Article  CAS  PubMed  Google Scholar 

  48. Stigter D (1977) Interactions of highly charged colloidal cylinders with applications to double-stranded DNA. Biopolymers 16:1435–1448

    Article  CAS  PubMed  Google Scholar 

  49. Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12:46–53

    Article  CAS  PubMed  Google Scholar 

  50. Mi LJ, Wen YQ, Pan D, Wang YH, Fan CH, Hu J (2009) Modulation of DNA polymerases with gold nanoparticles and their applications in hot-start PCR. Small 5:2597–2600

    Article  CAS  PubMed  Google Scholar 

  51. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, K., Du, S., Van Ginkel, S., Chen, Y. (2014). Atomic Force Microscopy Study of the Interaction of DNA and Nanoparticles. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_6

Download citation

Publish with us

Policies and ethics