Skip to main content

Insights into the Thermophile Diversity in Hot Springs of Pakistan

  • Chapter
  • First Online:
Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 8))

Abstract

The hot springs are populated by mesophilic, thermotolerant, and hyperthermophilic bacteria. These populations are diverse, and some of them show combinations of other extreme conditions, for example, acidic, alkaline, high pressure, and high concentrations of salts and heavy metals. Anaerobes inhabiting hot springs are considered to be the closest living descendants of the earliest living forms on earth, and their study offers understandings about the origin and evolution of life. In this chapter, thermal spring bacterial diversity from Pakistani ecology is reviewed. The bacterial populations in Pakistani hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. Analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in thermal spring environments. Libraries were predominantly composed of rare phylotypes that appeared to be unclassified, and the number and type of phylotypes observed were correlated with biogeography as well as biogeochemistry. These findings broaden our opinion of the genetic diversity of bacteria in hot water spring environments. The global-scale bacterial diversity of other hot water spring environments, on the other hand, may be beyond present proficiencies for authentic study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abin CA, Hollibaugh JT (2017) Desulfuribacillus stibiiarsenatis sp. nov., an obligately anaerobic, dissimilatory antimonate- and arsenate-reducing bacterium isolated from anoxic sediments, and emended description of the genus Desulfuribacillus. Int J Syst Evol Microbiol 67:1011–1017

    Article  PubMed  Google Scholar 

  • Ahmad S, Ali A, Ullah I, Naz N, Ali A, Ali N (2013) Bacteriological and biochemical evaluation of the spring’s water of district Buner Khyber Pakhtunkhwa Pakistan. Int J Adv Res Technol 2:452–460

    Google Scholar 

  • Ahmad M, Tasneem M, Rafique M, Akram W, Iqbal N, Rafiq M, Fazil M (2015) Identification of recharge sources and dating of groundwater using isotope and CFC techniques. In: Proceedings of the first international conference on environmentally sustainable development. 1slamabad, Pakistan. pp 1125–1135

    Google Scholar 

  • Ahsan Mustaqeem S, Qureshi SR, Waqar A (2015) Exergetic and energetic analysis of power generation from geothermal resources in Pakistan. In: Proceedings of the World Geothermal Congress, Melbourne, Australia. pp 1–11

    Google Scholar 

  • Al-Dhabi NA, Esmail GA, Duraipandiyan V, Arasu MV, Salem-Bekhit MM (2016) Isolation, identification and screening of antimicrobial thermophilic Streptomyces sp. Al-Dhabi-1 isolated from Tharban hot spring, Saudi Arabia. Extremophiles 20(1):79–90

    Article  PubMed  CAS  Google Scholar 

  • Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243

    Article  PubMed  CAS  Google Scholar 

  • Amin A, Ahmed I, Habib N, Abbas S, Xiao M, Hozzein WN, Li W-J (2016) Nocardioides pakistanensis sp. nov., isolated from a hot water spring of Tatta Pani in Pakistan. Antonie Van Leeuwenhoek 109:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Amin A, Ahmed I, Khalid N, Osman G, Khan IU, Xiao M, Li W-J (2017a) Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan. Antonie Van Leeuwenhoek 110:77–86

    Article  PubMed  CAS  Google Scholar 

  • Amin A, Ahmed I, Salam N, Kim B-Y, Singh D, Zhi X-Y, Xiao M, Li W-J (2017b) Diversity and distribution of thermophilic bacteria in hot springs of Pakistan. Microbial Ecol 74:116–127

    Article  Google Scholar 

  • Arnórsdóttir J, Sigtryggsdóttir ÁR, Thorbjarnardóttir SH, Kristjánsson MM (2009) Effect of proline substitutions on stability and kinetic properties of a cold adapted subtilase. J Biochem 145:325–329

    Article  PubMed  CAS  Google Scholar 

  • Bakht MS (2000) An overview of geothermal resources of Pakistan. In: Proceedings of the World Geothermal Congress, Kyushu, Japan. pp 77–83

    Google Scholar 

  • Beijerinck M (1913) Jaarboek van de Koninklijke Akademie v. Wetenschoppen Muller, Amsterdam, The Netherlands. In Dutch

    Google Scholar 

  • Bezsudnova EY, Boyko KM, Polyakov KM, Dorovatovskiy PV, Stekhanova TN, Gumerov VM, Ravin NV, Skryabin KG, Kovalchuk MV, Popov VO (2012) Structural insight into the molecular basis of polyextremophilicity of short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus. Biochimie 94:2628–2638

    Article  PubMed  CAS  Google Scholar 

  • Bikkina S, Bhati AP, Padhi S, Priyakumar UD (2017) Temperature dependence of the stability of ion pair interactions, and its implications on the thermostability of proteins from thermophiles. J Chem Sci 129:405–414

    Article  CAS  Google Scholar 

  • Blank CE, Cady SL, Pace NR (2002) Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68:5123–5135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL, Polz MF (2011) Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. MBio 2:e00335–e00310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bravakos P, Kotoulas G, Skaraki K, Pantazidou A, Economou-Amilli A (2016) A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Mol Phylogenet Evol 98:147–160

    Article  PubMed  Google Scholar 

  • Brock TD (1997) The value of basic research: discovery of Thermus aquaticus and other extreme thermophiles. Genetics 146:1207–1210

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brock TD (2012) Thermophilic microorganisms and life at high temperatures. Springer, New York

    Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297

    PubMed  PubMed Central  CAS  Google Scholar 

  • Burgess EA (2009) Geomicrobiological description of two contemporary hydrothermal pools in Uzon Caldera, Kamchatka, Russia, as models for sulfur biogeochemistry. PhD Thesis, University of Georgia, USA

    Google Scholar 

  • Burgess EA, Wagner ID, Wiegel J (2007) Thermal environments and biodiversity. In: Physiology and biochemistry of extremophiles. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Byrer DE, Rainey FA, Wiegel J (2000) Novel strains of Moorella thermoacetica form unusually heat-resistant spores. Arch Microbiol 174:334–339

    Article  PubMed  CAS  Google Scholar 

  • Carreto L, Moore E, Nobre MF, Wait R, Riley PW, Sharp RJ, DA COSTA MS (1996) Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Evol Microbiol 46:460–465

    CAS  Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2:281–292

    Article  PubMed  CAS  Google Scholar 

  • Cayol J-L, Ducerf S, Patel B, Garcia J-L, Thomas P, Ollivier B (2000) Thermohalobacter berrensis gen. nov., sp. nov., a thermophilic, strictly halophilic bacterium from a solar saltern. Int J Syst Evol Microbiol 50:559–564

    Article  PubMed  CAS  Google Scholar 

  • Chakravorty D, Faheem Khan M, Patra S (2017) Thermostability of proteins revisited through machine learning methodologies: from nucleotide sequence to structure. Curr Biotechnol 6:39–49

    Article  CAS  Google Scholar 

  • Chang MS, Gachal GS, Qadri AH, Sheikh MY (2013) Ecological impacts on the status of Marsh Crocodiles in Manghopir Karachi. Int J Adv Res 1:42–46

    Google Scholar 

  • Chen W, Wang BJ, Hong HZ, Yang H, Liu SJ (2012a) Deinococcus reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol 62:78–83

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Wang Q, Lin L, Tang Q, Edwards JL, Li S, Liu S (2012b) Comparative evaluation of two isobaric labeling tags, DiART and iTRAQ. Anal Chem 84:2908–2915

    Article  PubMed  CAS  Google Scholar 

  • Chevaldonné P, Fisher C, Childress J, Desbruyères D, Jollivet D, Zal F, Toulmond A (2000) Thermotolerance and the ‘Pompeii worms’. Mar Ecol Prog Ser 208:293–295

    Article  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM (1979) On the Galapagos Rift. Science 203:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Cowan D, Ramond J, Makhalanyane T, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102

    Article  PubMed  CAS  Google Scholar 

  • Cybulski LE, Ballering J, Moussatova A, Inda ME, Vazquez DB, Wassenaar TA, de Mendoza D, Tieleman DP, Killian JA (2015) Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. Proc Natl Acad Sci 112:6353–6358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Delaye L, Becerra A, Lazcano A (2005) The last common ancestor: what’s in a name? Orig Life Evol Biosph 35:537–554

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Serrano L, López G, Bohorquez LC, Bustos JR, Rubiano C, Osorio-Forero C, Junca H, Baena S, Zambrano MM (2014) Neotropical Andes hot springs harbor diverse and distinct planktonic microbial communities. FEMS Microbiol Ecol 89:56–66

    Article  PubMed  CAS  Google Scholar 

  • Donahoe-Christiansen J, D’Imperio S, Jackson CR, Inskeep WP, McDermott TR (2004) Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol 70:1865–1868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong Y, Sanford RA, Boyanov MI, Kemner KM, Flynn TM, O’Loughlin EJ, Locke RA II, Weber JR, Egan SM, Fouke BW (2016) Tepidibacillus decaturensis sp. nov.: a microaerophilic, moderately thermophilic iron-reducing bacterium isolated from a depth of 1.7 km in the Illinois Basin, USA. Int J Syst Evol Microbiol 66(10):3964–3971

    Google Scholar 

  • Dworkin JP, Lazcano A, Miller SL (2002) The roads to and from the RNA world. J Theor Biol 222:127–134

    Article  CAS  Google Scholar 

  • Engle M, Li Y, Woese C, Wiegel J (1995) Isolation and characterization of a novel Alkalitolerant Thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int J Syst Evol Microbiol 45:454–461

    CAS  Google Scholar 

  • Fadhlaoui K, Hania WB, Postec A, Hamdi M, Ollivier B, Fardeau M-L (2016) Balneicella halophila gen. nov., sp. nov., an anaerobic bacterium, isolated from a thermal spring and description of Balneicellaceae fam. nov. Int J Syst Evol Microbiol 66(11):4692–4696

    Article  PubMed  Google Scholar 

  • Forterre P, Brochier C, Philippe H (2002) Evolution of the Archaea. Theor Popul Biol 61:409–422

    Article  PubMed  Google Scholar 

  • Fuchs T, Huber H, Teiner K, Burggraf S, Stetter K (1996) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566

    Article  Google Scholar 

  • Gerday C, Glansdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC

    Google Scholar 

  • Gondal IA, Masood SA, Amjad M (2017) Review of geothermal energy development efforts in Pakistan and way forward. Renew Sust Energ Rev 71:687–696

    Article  Google Scholar 

  • Grassia GS, McLean KM, Glénat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58

    Article  CAS  Google Scholar 

  • Gulen B, Petrov AS, Okafor CD, Vander Wood D, O’Neill EB, Hud NV, Williams LD (2016) Ribosomal small subunit domains radiate from a central core. Sci Rep 6:20885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193

    Article  PubMed  CAS  Google Scholar 

  • Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One 8:e53350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu Z, Xu C, McDowell NG, Johnson DJ, Wang M, Luo Y, Zhou X, Huang Z (2017) Linking microbial community composition to C loss rates during wood decomposition. Soil Biol Biochem 104:108–116

    Article  CAS  Google Scholar 

  • Huber R, Rossnagel P, Woese C, Rachel R, Langworthy TA, Stetter KO (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol 19:40–49

    Article  PubMed  CAS  Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K (2016) A new view of the tree of life. Nat Microbiol 1:16048

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:REVIEWS0003

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MH, Lebbe L, Willems A, Steinbüchel A (2016) Chelatococcusthermostellatus sp. nov., a new thermophile for bioplastic synthesis: comparative phylogenetic and physiological study. AMB Exp 6(1):1–9

    Google Scholar 

  • Inan K, Ozer A, Guler HI, Belduz AO, Canakci S (2016) Brevibacillus gelatini sp. nov., isolated from a hot spring. Int J Syst Evol Microbiol 66(2):712–718

    Article  PubMed  CAS  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen Ø, Birkeland N-K (2008) Methane oxidation at 55 C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci 105:300–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Islas S, Velasco AM, Becerra A, Delaye L, Lazcano A (2003) Hyperthermophile and the origin and earliest evolution of life. Int Microbiol 6:87–94

    Article  PubMed  CAS  Google Scholar 

  • Irfan M, Tayyab A, Hasan F, Khan S, Badshah M, Shah AA (2017) Production and characterization of organic solvent-tolerant cellulase from Bacillus amyloliquefaciens AK9 isolated from hot spring. Appl Biochem Biotechnol 182(4):1390–1402

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Onishi M, Kato S, Iino T, Sakamoto M, Kudo T, Takashina T, Ohkuma M (2016) Athalassotoga saccharophila gen. nov., sp. nov., isolated from an acidic terrestrial hot spring, and proposal of Mesoaciditogales ord. nov. and Mesoaciditogaceae fam. nov. in the phylum Thermotogae. Int J Syst Evol Microbiol 66(2):1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Jahangir T, Khuhawar M, Leghari S, Leghari A (2001) Physico-chemical and biological study of Mangho Pir euthermal springs Karachi, Sindh, Pakistan. Online J Biol Sci 1:636–639

    Article  Google Scholar 

  • Javed M, Zahoor S, Sabar H, Haq I, Babar M (2012) Thermophilic bacteria from the hot springs of gilgit (Pakistan). J Anim Plant Sci 22:83–87

    CAS  Google Scholar 

  • Jessen JE, Orlygsson J (2012) Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland. Biomed Res Int 2012:86982

    Google Scholar 

  • Jiang X, Takacs-Vesbach CD (2017) Microbial community analysis of pH 4 thermal springs in Yellowstone National Park. Extremophiles 21:135–152

    Article  PubMed  Google Scholar 

  • Johnson M, Conners S, Montero C, Chou C, Shockley K, Kelly R (2006) The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture. Appl Environ Microbiol 72:811–818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    Article  PubMed  CAS  Google Scholar 

  • Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article  PubMed  CAS  Google Scholar 

  • Kambura AK, Mwirichia RK, Kasili RW, Karanja EN, Makonde HM, Boga HI (2016) Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya. BMC Microbiol 16:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934–934

    Article  PubMed  CAS  Google Scholar 

  • Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci 30:385–491

    Article  CAS  Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Sugihara M, Yamamoto H, Patel BK, Kato K, Hanada S (2005) Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles 9:407–414

    Article  PubMed  CAS  Google Scholar 

  • Korn-Wendisch F, Rainey F, Kroppenstedt R, Kempf A, Majazza A, Kutzner H, Stackebrandt E (1995) Thermocrispum gen. nov., a new genus of the order Actinomycetales, and description of Thermocrispum municipale sp. nov. and Thermocrispum agreste sp. nov. Int J Syst Evol Microbiol 45:67–77

    CAS  Google Scholar 

  • Kojima H, Umezawa K, Fukui M (2016) Caldimicrobium thiodismutans sp. nov., a sulfur-disproportionating bacterium isolated from a hot spring, and emended description of the genus Caldimicrobium. Int J Syst Evol Microbiol 66(4):1828–1831

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Watanabe M, Fukui M (2017) Sulfuritortus calidifontis gen. nov., sp. nov., a novel sulfur oxidizer isolated from a hot spring microbial mat. Int J Syst Evol Microbiol 67(5):1355–1358

    Google Scholar 

  • Khan IU, Hussain F, Tian Y, Habib N, Xian W-D, Jiang Z, Amin A, Yuan C-G, Zhou E-M, Zhi X-Y (2017) Tibeticola sediminis gen. nov., sp. nov., a thermophilic bacterium isolated from hot spring. Int J Syst Evol Microbiol 67(5):1133–1139

    Google Scholar 

  • Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P, Shamsani NJ, Young JPW, Bailly X (2015) Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biol 5:140133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau MC, Aitchison JC, Pointing SB (2009) Bacterial community composition in thermophilic microbial mats from five hot springs in Central Tibet. Extremophiles 13:139–149

    Article  PubMed  Google Scholar 

  • Lazcano A, Bada JL (2003) The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry. Orig Life Evol Biosph 33:235–242

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-E, Jain MK, Lee C, Zeikus JG (1993) Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Evol Microbiol 43:41–51

    Google Scholar 

  • Lee JY, Iglesias B, Chu CE, Lawrence DJ, Crane EJ III (2017) Pyrobaculum igneiluti sp. nov., a novel anaerobic hyperthermophilic archaeon that reduces thiosulfate and ferric iron. Int J Syst Evol Microbiol 67:1714–1719

    Article  PubMed  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci 95:7933–7938

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • López G, Cañas-Duarte S, Pinzón-Velasco A, Vega-Vela N, Rodríguez M, Restrepo S, Baena S (2017) Description of a new anaerobic thermophilic bacterium thermoanaerobacterium butyriciformans sp nov. Syst Appl Microbiol 40(2):86–91

    Article  PubMed  CAS  Google Scholar 

  • Luo G, Wang W, Angelidaki I (2013) Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology. Environ Sci Technol 47:10685–10693

    PubMed  CAS  Google Scholar 

  • Magurran AE (2013) Measuring biological diversity. Wiley, Malden

    Google Scholar 

  • Marteinsson VT, Birrien J-L, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 49:351–359

    Google Scholar 

  • Merkel AY, Pimenov NV, Rusanov II, Slobodkin AI, Slobodkina GB, Tarnovetckii IY, Frolov EN, Dubin AV, Perevalova AA, Bonch-Osmolovskaya EA (2017) Microbial diversity and autotrophic activity in Kamchatka hot springs. Extremophiles 21:307–317

    Article  PubMed  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2005) Halophilic thermophiles: a novel group of extremophiles. Microbial diversity: current perspectives and potential applications. IK Publishing House, New Delhi, pp 91–118

    Google Scholar 

  • Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizobata T, Kagawa M, Murakoshi N, Kusaka E, Kameo K, Kawata Y, Nagai J (2000) Overproduction of Thermus sp. YS 8-13 manganese catalase in Escherichia coli. Eur J Biochem 267:4264–4271

    PubMed  CAS  Google Scholar 

  • Mrabet NT, Van den Broeck A, Stanssens P, Laroche Y, Lambeir A, Matthijssens G, Jenkins J, Chiadmi M, Van Tilbeurgh H (1992) Arginine residues as stabilizing elements in proteins. Biochemistry 31:2239–2253

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Fukui M (2002) Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient. J Gen Appl Microbiol 48:211–222

    Article  PubMed  CAS  Google Scholar 

  • Norris TB, Wraith JM, Castenholz RW, McDermott TR (2002) Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl Environ Microbiol 68:6300–6309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nübel U, Bateson MM, Vandieken V, Wieland A, Kühl M, Ward DM (2002) Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats. Appl Environ Microbiol 68:4593–4603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okanishi H, Kim K, Fukui K, Yano T, Kuramitsu S, Masui R (2017) Proteome-wide identification of lysine succinylation in thermophilic and mesophilic bacteria. Biochim Biophys Acta 1865:232–242

    Article  CAS  Google Scholar 

  • Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orphan V, Goffredi SK, Delong E, Boles J (2003) Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiol J 20:295–311

    Article  CAS  Google Scholar 

  • Pace NR (1991) Origin of life-facing up to the physical setting. Cell 65:531–533

    Article  PubMed  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Pang J, Allemann RK (2007) Molecular dynamics simulation of thermal unfolding of Thermotoga maritima DHFR. Phys Chem Chem Phys 9:711–718

    Article  PubMed  CAS  Google Scholar 

  • Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN, Jurkevitch E (2013) By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J 7:756–769

    Article  PubMed  CAS  Google Scholar 

  • Pearson A, Huang Z, Ingalls A, Romanek C, Wiegel J, Freeman K, Smittenberg R, Zhang C (2004) Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol 70:5229–5237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  PubMed  CAS  Google Scholar 

  • Petrov AS, Gulen B, Norris AM, Kovacs NA, Bernier CR, Lanier KA, Fox GE, Harvey SC, Wartell RM, Hud NV (2015) History of the ribosome and the origin of translation. Proc Natl Acad Sci 112:15396–15401

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pérez-Rodríguez I, Rawls M, Coykendall DK, Foustoukos DI (2016) Deferrisoma palaeochoriense sp. nov., a thermophilic, iron (III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea. Int J Syst Evol Microbiol 66(2):830–836

    Article  PubMed  CAS  Google Scholar 

  • Pledger RJ, Crump BC, Baross JA (1994) A barophilic response by two hyperthermophilic, hydrothermal vent Archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol Ecol 14:233–241

    Article  Google Scholar 

  • Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML (2017) Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J 11:248–262

    Article  PubMed  CAS  Google Scholar 

  • Ranawat P, Rawat S (2017) Stress response physiology of thermophiles. Arch Microbiol 199:391–414

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach A-L, Shock E (2002) Merging genomes with geochemistry in hydrothermal ecosystems. Science 296:1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach A-L, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell N, Harrisson P, Johnston I, Jaenicke R, Zuber M, Franks F, Wynn-Williams D (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B 326:595–611

    Article  CAS  Google Scholar 

  • Salem RB, Abbassi MS, Cayol J-L, Bourouis A, Mahrouki S, Fardeau M-L, Belhadj O (2016) Thermophilic Bacillus licheniformis rbs 5 isolated from hot tunisian spring co-producing alkaline and thermostable [alpha]-amylase and protease enzymes. J Microbiol Biotechnol Food Sci 5(6):557

    Article  CAS  Google Scholar 

  • Sarker MR, Akhtar S, Torres JA, Paredes-Sabja D (2015) High hydrostatic pressure-induced inactivation of bacterial spores. Crit Rev Microbiol 41:18–26

    Article  PubMed  CAS  Google Scholar 

  • Shah AA, Nawaz A, Kanwal L, Hasan F, Khan S, Badshah M (2015) Degradation of poly (ε-caprolactone) by a thermophilic bacterium Ralstonia sp. strain MRL-TL isolated from hot spring. Int Biodeterior Biodegrad 98:35–42

    Article  CAS  Google Scholar 

  • Sharp C, Stott M, Dunfield P (2012) Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing. Front Microbiol 3:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin K-S, Shin YK, Yoon J-H, Park Y-H (2001) Candida thermophila sp. nov., a novel thermophilic yeast isolated from soil. Int J Syst Evol Microbiol 51:2167–2170

    Article  PubMed  CAS  Google Scholar 

  • Shockley KR, Ward DE, Chhabra SR, Conners SB, Montero CI, Kelly RM (2003) Heat shock response by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 69:2365–2371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shuja TA (1986) Geothermal areas in Pakistan. Geothermics 15:719–723

    Article  Google Scholar 

  • Sievert SM, Kuever J, Muyzer G (2000) Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 66:3102–3109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjorleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slobodkin A, Tourova T, Kuznetsov B, Kostrikina N, Chernyh N, Bonch-Osmolovskaya E (1999) Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe (III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Evol Microbiol 49:1471–1478

    Google Scholar 

  • Slobodkina GB, Baslerov RV, Novikov AA, Viryasov MB, Bonch-Osmolovskaya EA, Slobodkin AI (2016) Inmirania thermothiophila gen. nov., sp. nov., a thermophilic, facultatively autotrophic, sulfur-oxidizing gammaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 66(2):701–706

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E (2014) The family Gracilibacteraceae and transfer of the genus Lutispora into Gracilibacteraceae. In: The prokaryotes. Springer, Berlin, Heidelberg, pp 149–151

    Google Scholar 

  • Strazzulli A, Iacono R, Giglio R, Moracci M, Cobucci-Ponzano B (2017) Metagenomics of hyperthermophilic environments: biodiversity and biotechnology. In: Microbial ecology of extreme environments. Springer, Cham, pp 103–135

    Chapter  Google Scholar 

  • Summit M, Scott B, Nielson K, Mathur E, Baross J (1998) Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms. Extremophiles 2:339–345

    Article  PubMed  CAS  Google Scholar 

  • Szewzyk U, Szewzyk R, Stenström T (1994) Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden. Proc Natl Acad Sci 91:1810–1813

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Szilágyi A, Závodszky P (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8:493–504

    Article  PubMed  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2000) Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl Environ Microbiol 66:73–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi C, Mahato NK, Singh AK, Kamra K, Korpole S, Lal R (2016) Lampropedia cohaerens sp. nov., a biofilm-forming bacterium isolated from microbial mats of a hot water spring, and emended description of the genus Lampropedia. Int J Syst Evol Microbiol 66(3):1156–1162

    Article  PubMed  CAS  Google Scholar 

  • Tripathy S, Padhi SK, Mohanty S, Samanta M, Maiti NK (2016a) Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism. Extremophiles:1–12

    Google Scholar 

  • Tripathy S, Padhi SK, Sen R, Maji U, Samanta M, Mohanty S, Maiti NK (2016b) Draft genome sequence of Brevibacillus borstelensis cifa_chp40, a Thermophilic Strain Having Biotechnological Importance. J Gen 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156(2):81–90

    Article  CAS  Google Scholar 

  • Wang Z, Tong W, Wang Q, Bai X, Chen Z, Zhao J, Xu N, Liu S (2012) The temperature dependent proteomic analysis of Thermotoga maritima. PLoS One 7:e46463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang C, Song Z, Zhang Y, Ren H (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS One 8:e62901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, Cen Z, Zhao J (2015) The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology 30:97–106

    Article  PubMed  CAS  Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    PubMed  PubMed Central  CAS  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:257–267

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J, Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128:343–348

    Article  CAS  Google Scholar 

  • Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260

    Article  CAS  Google Scholar 

  • Wiegel J, Hanel J, Aygen K (2003) Chemolithoautotrophic thermophilic iron (III)-reducer. In: Biochemistry and physiology of anaerobic Bacteria. Springer, New York, NY, pp 235–251

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  PubMed  CAS  Google Scholar 

  • Wilson EO (1992) The diversity of life. WW Norton & Company, New York

    Google Scholar 

  • Xian W-D, Yin Y-R, Liu L, Yuan C-G, Hussain F, Khan I, Habib N, Zhou E-M, Li W-J (2016) Brevibacillus sediminis sp. nov., isolated from a hot spring. Int J Syst Evol Microbiol 66(2):548–553

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Xu Y, Liu Y, Ma Y, Zhou P (2001) Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int J Syst Evol Microbiol 51:1335–1341

    Article  PubMed  CAS  Google Scholar 

  • Yim LC, Hongmei J, Aitchison JC, Pointing SB (2006) Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress. FEMS Microbiol Ecol 57:80–91

    Article  PubMed  CAS  Google Scholar 

  • Yoon Y, Lee H, Lee S, Kim S, Choi K-H (2015) Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Res Int 72:25–36

    Article  CAS  Google Scholar 

  • Zhao W-D, Romanek CS, Mills G, Wiegel J, Zhang C-L (2005) Geochemistry and microbiology of hot springs in Kamchatka. Russ Geol J China Univ 11:217–223

    CAS  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125(3):259–269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iftikhar Ahmed or Wen-Jun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amin, A., Ahmed, I., Khalid, N., Zhang, Y., Xiao, M., Li, WJ. (2018). Insights into the Thermophile Diversity in Hot Springs of Pakistan. In: Egamberdieva, D., Birkeland, NK., Panosyan, H., Li, WJ. (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-13-0329-6_1

Download citation

Publish with us

Policies and ethics