Skip to main content

Development and Application of Cryoprotectants

  • Chapter
  • First Online:
Survival Strategies in Extreme Cold and Desiccation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1081))

Abstract

Cryopreservation involves the preservation of biological materials, including cells, embryos, tissues, and organs, at ultra-low temperatures (in a state of suspended animation), for a long period of time, and in a way that allows them to be restored whenever required. Freezing of biological samples is generally accompanied by numerous undesirable outcomes such as intra- and extracellular freezing damage and osmotic stress. To prevent these adverse effects, cryoprotective agents (CPAs) are added to biological materials before freezing. Over the years, a number of CPAs have been identified and developed and have been employed successfully for numerous applications. Here, we review the history and development of cryoprotectants and the current understanding of the cryopreservation process. We conclude with a discussion about the application of cryopreservation for various clinical and academic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

Assisted reproductive technology

COOH-PLL:

Carboxylated poly-l-lysine

CPA:

Cryoprotective agent

DMSO:

Dimethyl sulfoxide

HES:

Hydroxyethyl starch

PLL:

Poly-l-lysine

PVP:

Polyvinylpyrrolidone

References

  • ACOG (2014) Oocyte cryopreservation. Committee opinion no. 584. American College of Obstetricians and Gynecologists (ACOG). Obstet Gynecol 123:221–222

    Article  Google Scholar 

  • Archer DL (2004) Freezing: an underutilized food safety technology? Int J Food Microbiol 90:127–138

    Article  Google Scholar 

  • Ashwood-Smith MJ, Warby C, Connor KW, Becker G (1972) Low-temperature preservation of mammalian cells in tissue culture with polyvinylpyrrolidone (PVP), dextrans, and hydroxyethyl starch (HES). Cryobiology 9:441–449

    Article  CAS  Google Scholar 

  • Beattie GM, Crowe JH, Lopez AD, Cirulli V, Ricordi C, Hayek A (1997) Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 46:519 LP–523

    Article  CAS  Google Scholar 

  • Behrman SJ, Sawada Y (2017) Heterologous and homologous inseminations with human semen frozen and stored in a liquid-nitrogen refrigerator. Fertil Steril 17:457–466

    Article  Google Scholar 

  • Benson JD, Woods EJ, Walters EM, Critser JK (2012) The cryobiology of spermatozoa. Theriogenology 78:1682–1699

    Article  CAS  Google Scholar 

  • Bernard A, Fuller BJ (1996) Cryopreservation of human oocytes: a review of current problems and perspectives. Hum Reprod Update 2:193

    Article  CAS  Google Scholar 

  • Birdgeye C, Fitzgerald GA (1932) History and present importance of quick freezing. Ind Eng Chem 24:676–678

    Article  Google Scholar 

  • Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, Pyatt DW (2004) Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev 13:295–305

    Article  CAS  Google Scholar 

  • Bunge RG, Sherman JK (1953) Fertilizing capacity of frozen human spermatozoa. Nature 172:767–768

    Article  CAS  Google Scholar 

  • Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 327:884–886

    Article  Google Scholar 

  • Choi RS, Vacanti JP (1997) Preliminary studies of tissue-engineered intestine using isolated epithelial organoid units on tubular synthetic biodegradable scaffolds. Transplant Proc 29:848–851

    Article  CAS  Google Scholar 

  • Cobo A, Kuwayama M, Perez S, Ruiz A, Pellicer A, Remohi J (2008) Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril 89:1657–1664

    Article  Google Scholar 

  • Cobo A, Meseguer M, Remohi J, Pellicer A (2010) Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod 25:2239–2246

    Article  Google Scholar 

  • Connor W, Ashwood-Smith MJ (1973) Cryoprotection of mammalian cells in tissue culture with polymers; possible mechanisms. Cryobiology 10:488–496

    Article  CAS  Google Scholar 

  • Damjanovic V, Thomas D (1974) The use of polyvinylpyrrolidone as a cryoprotectant in the freezing of human lymphocytes. Cryobiology 11:312–316

    Article  CAS  Google Scholar 

  • Day JG, McLellan MR (1995) Cryopreservation and freeze-drying protocols. Humana Press, Totowa

    Book  Google Scholar 

  • Di Santo M, Tarozzi N, Nadalini M, Borini A (2012) Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012:854837

    Google Scholar 

  • Donnelly ET, McClure N, Lewis SE (2001) Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 76:892–900

    Article  CAS  Google Scholar 

  • Elder E, Chen Z, Ensley A, Nerem R, Brockbank K, Song Y (2005) Enhanced tissue strength in cryopreserved, collagen-based blood vessel constructs. Transplant Proc 37:4625–4629

    Article  CAS  Google Scholar 

  • Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner M (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18:163–167

    Article  CAS  Google Scholar 

  • Findlay JK, Gear ML, Illingworth PJ, Junk SM, Kay G, Mackerras AH, Pope A, Rothenfluh HS, Wilton L (2007) Human embryo: a biological definition. Hum Reprod 22:905–911

    Article  CAS  Google Scholar 

  • Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25:375–388

    CAS  PubMed  Google Scholar 

  • Garzon AA, Cheng C, Lerner B, Lichtenstein S, Karlson KE (1967) Hydroxyethyl starch (HES) and bleeding: an experimental investigation of its effect on hemostasis. J Trauma Acute Care Surg 7:757–766

    Article  CAS  Google Scholar 

  • Hincha DK, Popova AV, Cacela C (2006) Chapter 6 effects of sugars on the stability and structure of embranes during drying. Adv Planar Lipid Bilayers Liposomes 3:189–217

    Article  CAS  Google Scholar 

  • Hossain AM, Osuamkpe CO (2007) Sole use of sucrose in human sperm cryopreservation. Arch Androl 53:99–10s

    Article  CAS  Google Scholar 

  • Hredzak R, Ostro A, Zdilova V, Toporcerova S, Kacmarik J (2005) Clinical experience with a modified method of human embryo vitrification. Ces Gynekol 70:99–103

    CAS  Google Scholar 

  • Hsueh AJ, Billig H, Tsafriri A (1994) Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 15:707–724

    CAS  PubMed  Google Scholar 

  • Hunter JE (1995) Cryopreservation of human gametes. Day JG, McLellan MR Cryopreservation and freeze-drying protocols. Humana Press, Totowa, 221–234

    Chapter  Google Scholar 

  • Jain M, Rajan R, Hyon S-H, Matsumura K (2014) Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry. Biomater Sci 2:308–317

    Article  CAS  Google Scholar 

  • Katenz E, Vondran FWR, Schwartlander R, Pless G, Gong X, Cheng X, Neuhaus P, Sauer IM (2007) Cryopreservation of primary human hepatocytes: the benefit of trehalose as an additional cryoprotective agent. Liver Transpl 13:38–45

    Article  Google Scholar 

  • Kenmochi T, Asano T, Maruyama M, Saigo K, Akutsu N, Iwashita C, Ohtsuki K, Suzuki A, Miyazaki M (2008) Cryopreservation of human pancreatic islets from non-heart-beating donors using hydroxyethyl starch and dimethyl sulfoxide as cryoprotectants. Cell Transplant 17:61–67

    Article  Google Scholar 

  • Kim K-J, Lee Y-A, Kim B-J, Kim Y-H, Kim B-G, Kang H-G, Jung S-E, Choi S-H, Schmidt JA, Ryu B-Y (2015) Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing. Cryobiology 70:175–183

    Article  CAS  Google Scholar 

  • Knorpp CT, Merchant WR, Gikas PW, Spencer HH, Thompson NW (1967) Hydroxyethyl starch: extracellular cryophylactic agent for erythrocytes. Science 157:1312–1313

    Article  CAS  Google Scholar 

  • Koch E, Larak M, Ellendorff F (1991) Comparative studies on in vitro reactivity of fresh and cryopreserved pig lymphocytes. Cryobiology 28:405–412

    Article  CAS  Google Scholar 

  • Konc J, Kanyó K, Kriston R, Somoskői B, Cseh S (2014) Cryopreservation of embryos and oocytes in human assisted reproduction. Biomed Res Int 2014:1–9

    Article  Google Scholar 

  • Körber C, Scheiwe MW (1980) The cryoprotective properties of hydroxyethyl starch investigated by means of differential thermal analysis. Cryobiology 17:54–65

    Article  Google Scholar 

  • Kuleshova L, Hutmacher D (2008) Cryobiology. In: Blitterswijk C, Thomsen P, Lindahl A, Hubbell J, Williams DF, Cancedda R, de Bruijn JD, Sohier J (eds) Tissue engineering. Academic, Burlington, pp 363–401

    Chapter  Google Scholar 

  • Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A (1999) Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 14:3077–3079

    Article  CAS  Google Scholar 

  • Kuleshova LL, Gouk SS, Hutmacher DW (2007) Vitrification as a prospect for cryopreservation of tissue-engineered constructs. Biomaterials 28:1585–1596

    Article  CAS  Google Scholar 

  • Leibo SP, Songsasen N (2002) Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 57:303–326

    Article  CAS  Google Scholar 

  • Leibo SP, Martino A, Kobayashi S, Pollard JW (1996) Stage-dependent sensitivity of oocytes and embryos to low temperatures. Anim Reprod Sci 42:45–53

    Article  Google Scholar 

  • Li Y, Chen Z, Yang H, Zhong W, Ma S, Li M (2007) Comparison of vitrification and slow-freezing of human day 3 cleavage stage embryos: post-vitrification development and pregnancy outcomes. Zhonghua Fu Chan Ke Za Zhi 42:753–755

    PubMed  Google Scholar 

  • Lionetti FJ, Hunt SM, Gore JM, Curby WA (1975) Cryopreservation of human granulocytes. Cryobiology 12:181–191

    Article  CAS  Google Scholar 

  • Liebermann J, Dietl J, Vanderzwalmen P, Tucker MJ (2003) Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod Biomed Online 7:623–633

    Article  Google Scholar 

  • Lovelock JE (1953a) Het mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11:28–36

    Article  CAS  Google Scholar 

  • Lovelock JE (1953b) The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta 10:414–426

    Article  CAS  Google Scholar 

  • Lovelock JE (1954) The protective action of neutral solutes against haemolysis by freezing and thawing. Biochem J 56:265–270

    Article  CAS  Google Scholar 

  • Lovelock JE, Bishop MWH (1959) Prevention of freezing damage to jiving cells by dimethyl sulphoxide. Nature 183:1394–1395

    Article  CAS  Google Scholar 

  • Luyet BJ (1937) The vitrification of organic colloids and of protoplasm. Biodynamica 1:1–14

    Google Scholar 

  • Mahajan RK, Renapurkar DM (1993) Cryopreservation of Angiostrongylus cantonensis third-stage larvae. J Helminthol 67:233–237

    Article  CAS  Google Scholar 

  • Matsumura K, Hyon S-H (2009) Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30:4842–4849

    Article  CAS  Google Scholar 

  • Matsumura K, Bae JY, Hyon SH (2010) Polyampholytes as cryoprotective agents for mammalian cell cryopreservation. Cell Transplant 19:691–699

    Article  Google Scholar 

  • Matsumura K, Hayashi F, Nagashima T, Hyon SH (2013) Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J Biomater Sci Polym Ed 24:1484–1497

    Article  CAS  Google Scholar 

  • Matsumura K, Jain M, Rajan R (2015) Cell and materials interface in cryobiology and cryoprotection. In: Vrana NE (ed) Cell and material interface, 1st edn. CRC Press, pp 163–186

    Google Scholar 

  • Matsumura K, Kawamoto K, Takeuchi M, Yoshimura S, Tanaka D, Hyon S-H (2016) Cryopreservation of a two-dimensional monolayer using a slow vitrification method with polyampholyte to inhibit ice crystal formation. ACS Biomater Sci Eng 2:1023–1029

    Article  CAS  Google Scholar 

  • Maximow NA (1912) 7. N. A. Maximow: Chemische Schutzmittel der Pflanzen gegen Erfrieren. I. Ber Dtsch Bot Ges 30:52–65

    Google Scholar 

  • Mazur P (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272

    Article  CAS  Google Scholar 

  • Mazur P, Leibo SP, Chu EHY (1972) A two-factor hypothesis of freezing injury. Exp Cell Res 71:345–355

    Article  CAS  Google Scholar 

  • Meryman HT (1964) Preservation of blood by freezing: a review. Cryobiology 51:52–56

    Article  CAS  Google Scholar 

  • Miyaoka R, Esteves SC (2013) Predictive factors for sperm retrieval and sperm injection outcomes in obstructive azoospermia: do etiology, retrieval techniques and gamete source play a role? Clinics 68:111–119

    Article  Google Scholar 

  • Muthukumarappan K, Tiwari B (2010) Refrigeration and freezing preservation of vegetables. In: Sinha N, Hui YH, Evranuz EÖ, Siddiq M, Ahmed J (eds) Handbook of vegetables and vegetable processing. Wiley-Blackwell, Hoboken, pp 259–277

    Google Scholar 

  • Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, Mallmann P, Dattena M, Capobianco G, Peters D, Orth I, Isachenko E (2002) Vitrification of human spermatozoa without cryoprotectants. CryoLetters 23:93–102

    CAS  PubMed  Google Scholar 

  • Nelson LM (2009) Clinical practice. Primary ovarian insufficiency. N Engl J Med 360:606–614

    Article  CAS  Google Scholar 

  • Pan C, Y S, Zhang P, Wang B, Zhu Z, Liu Y, Zeng W (2017) Effect of sucrose on cryopreservation of pig spermatogonial stem cells. J Integr Agric 16:1120–1129

    Article  CAS  Google Scholar 

  • Parmegiani L, Cognigni GE, Bernardi S, Cuomo S, Ciampaglia W, Infante FE, Tabarelli de Fatis C, Arnone A, Maccarini AM, Filicori M (2011) Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes. Reprod Biomed Online 23:505–512

    Article  CAS  Google Scholar 

  • Pegg DE, Wusteman MC, Boylan S (1997) Fractures in cryopreserved elastic arteries. Cryobiology 34:183–192

    Article  CAS  Google Scholar 

  • Pegg DE, Wang L, Vaughan D (2006) Cryopreservation of articular cartilage. Part 3: the liquidus-tracking method. Cryobiology 52:360–368

    Article  CAS  Google Scholar 

  • Persidsky M, Richards V (1962) Mode of protection with polyvinylpyrrolidone in freezing of bone marrow. Nature 196:585–586

    Article  CAS  Google Scholar 

  • Polge C (1977) The freezing of mammalian embryos: perspectives and possibilities. In: Elliott K, Whelan J (eds) Ciba foundation symposium 52 – the freezing of mammalian embryos. Wiley, Hoboken, pp 3–18

    Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666

    Article  CAS  Google Scholar 

  • Rajan R, Jain M, Matsumura K (2013) Cryoprotective properties of completely synthetic polyampholytes via reversible addition-fragmentation chain transfer (RAFT) polymerization and the effects of hydrophobicity. J Biomater Sci Polym Ed 24:37–41

    Article  Google Scholar 

  • Rajan R, Hayashi F, Nagashima T, Matsumura K (2016) Toward a molecular understanding of the mechanism of cryopreservation by polyampholytes: cell membrane interactions and hydrophobicity. Biomacromolecules 17:1882–1893

    Article  CAS  Google Scholar 

  • Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313:573–575

    Article  CAS  Google Scholar 

  • Rama Raju GA, Haranath GB, Krishna KM, Prakash GJ, Madan K (2005) Vitrification of human 8-cell embryos, a modified protocol for better pregnancy rates. Reprod Biomed Online 11:434–437

    Article  Google Scholar 

  • Richards V, Persidsky M (1961) Studies in the preservation of bone marrow. Surgery 50:288–298

    CAS  PubMed  Google Scholar 

  • Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E, Colamaria S, Sapienza F, Ubaldi F (2010) Embryo development of fresh “versus” vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod 25:66–73

    Article  Google Scholar 

  • Rumsey SC, Galeano NF, Arad Y, Deckelbaum RJ (1992) Cryopreservation with sucrose maintains normal physical and biological properties of human plasma low density lipoproteins. J Lipid Res 33:1551–1561

    CAS  PubMed  Google Scholar 

  • Sherman JK (1990) Cryopreservation of human semen. In: Keel BA, Webster BW (eds) Handbook of the laboratory diagnosis and treatment of infertility. CRC Press, Boca Raton, pp 229–259

    Google Scholar 

  • Smith AU (1950) Prevention of haemolysis during freezing and thawing of red blood-cells. Lancet 256:910–911

    Article  Google Scholar 

  • Song YC, An YH, Kang QK, Li C, Boggs JM, Chen Z, Taylor MJ, Brockbank KGM (2004) Vitreous preservation of articular cartilage grafts. J Investig Surg 17:65–70

    Article  Google Scholar 

  • Spallanzani L (1776) Osservazioni e spezienze interno ai vermicelli spermatici dell’ uomo e degli animali. In: Opusculi di Fisica Animale e Vegetabile, Opusculo II. Modena

    Google Scholar 

  • Spurrier RG, Grikscheit TC (2013) Tissue engineering the small intestine. Clin Gastroenterol Hepatol 11:354–358

    Article  CAS  Google Scholar 

  • Spurrier RG, Speer AL, Grant CN, Levin DE, Grikscheit TC (2014) Vitrification preserves murine and human donor cells for generation of tissue-engineered intestine. J Surg Res 190:399–406

    Article  CAS  Google Scholar 

  • Stolzing A, Naaldijk Y, Fedorova V, Sethe S (2012) Hydroxyethyl starch in cryopreservation – mechanisms, benefits and problems. Transfus Apher Sci 46:137–147

    Article  CAS  Google Scholar 

  • Takahashi T, Hirsh A, Erbe E, Williams RJ (1988) Mechanism of cryoprotection by extracellular polymeric solutes. Biophys J 54:509–518

    Article  CAS  Google Scholar 

  • Trounson A, Mohr L (1983) Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305:707–709

    Article  CAS  Google Scholar 

  • Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–58

    Article  CAS  Google Scholar 

  • Vincent C, Johnson MH (1992) Cooling, cryoprotectants, and the cytoskeleton of the mammalian oocyte. Oxf Rev Reprod Biol 14:73–100

    CAS  PubMed  Google Scholar 

  • Vorontsov DA, Sazaki G, Hyon S-H, Matsumura K, Furukawa Y (2014) Antifreeze effect of carboxylated ε-poly-l-lysine on the growth kinetics of ice crystals. J Phys Chem B 118:10240–10249

    Article  CAS  Google Scholar 

  • Wang P, Li Y, Hu X, Cai X-L, Hou L-P, Wang Y-F, Hu J-H, Li Q-W, Suo L-J, Fan Z-G, Zhang B (2014) Cryoprotective effects of low-density lipoproteins, trehalose and soybean lecithin on murine spermatogonial stem cells. Zygote 22:158–163

    Article  CAS  Google Scholar 

  • Watanabe H, Kohaya N, Kamoshita M, Fujiwara K, Matsumura K, Hyon S-H, Ito J, Kashiwazaki N (2013) Efficient production of live offspring from mouse oocytes vitrified with a novel cryoprotective agent, carboxylated ε-poly-L-lysine. PLoS One 8:e83613

    Article  Google Scholar 

  • Welt CK (2008) Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol 68:499–509

    Article  Google Scholar 

  • Whittingham DG (1971) Survival of mouse embryos after freezing and thawing. Nature 233:125–126

    Article  CAS  Google Scholar 

  • Whittingham DG (1975) Survival of rat embryos after freezing and thawing. J Reprod Fertil 43:575–578

    Article  CAS  Google Scholar 

  • Whittingham DG, Adams CE (1976) Low temperature preservation of rabbit embryos. J Reprod Fertil 47:269–274

    Article  CAS  Google Scholar 

  • Whittingham DG, Wales RG (1969) Storage of two-cell mouse embryos in vitro. Aust J Biol Sci 22:1065–1068

    Article  CAS  Google Scholar 

  • Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196 degrees and −269 degrees C. Science 178:411–414

    Article  CAS  Google Scholar 

  • Willadsen SM, Polge C, Rowson LE, Moor RM (1976) Deep freezing of sheep embryos. J Reprod Fertil 46:151–154

    Article  CAS  Google Scholar 

  • Wilmut I, Rowson LE (1973) The successful low-temperature preservation of mouse and cow embryos. J Reprod Fertil 33:352–353

    Article  CAS  Google Scholar 

  • Yin H, Cui L, Liu G, Cen L, Cao Y (2009) Vitreous cryopreservation of tissue engineered bone composed of bone marrow mesenchymal stem cells and partially demineralized bone matrix. Cryobiology 59:180–187

    Article  CAS  Google Scholar 

  • Zhang X, Khimji I, Shao L, Safaee H, Desai K, Keles HO, Gurkan UA, Kayaalp E, Nureddin A, Anchan RM, Maas RL, Demirci U (2012) Nanoliter droplet vitrification for oocyte cryopreservation. Nanomedicine (Lond) 7:553–564

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Matsumura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajan, R., Matsumura, K. (2018). Development and Application of Cryoprotectants. In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, vol 1081. Springer, Singapore. https://doi.org/10.1007/978-981-13-1244-1_18

Download citation

Publish with us

Policies and ethics