Skip to main content

Nature-Inspired Optimization Algorithms for Path Planning and Fuzzy Tracking Control of Mobile Robots

  • Chapter
  • First Online:
Applied Optimization and Swarm Intelligence

Abstract

This paper proposes two applications of nature-inspired optimization algorithms (NIOAs) to solve a path planning problem and the optimal tuning of Proportional-Integral (PI)-fuzzy controllers as tracking controllers for nonholonomic wheeled mobile robots in static environments. Two optimization problems are solved by NIOAs and included first in an off-line path planning approach that generates the reference trajectory and next a cost-effective PI-fuzzy tracking controller tuning approach. The NIOAs applied to solve both optimization problems are Particle Swarm Optimization, Gravitational Search Algorithm, Charged System Search Algorithm, Grey Wolf Optimizer and Whale Optimization Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Precup R-E, Voisan E-I, Petriu EM, Tomescu ML, David R-C, Szedlak-Stinean A-I, Roman R-C (2020) Grey wolf optimizer-based approaches to path planning and fuzzy logic-based tracking control for mobile robots. Int J Comput Commun Control 15(3):3844

    Google Scholar 

  2. Zohar I, Ailon A, Rabinovici R (2011) Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: trajectory tracking and related application. Robot Auton Syst 59(6):343–353

    Article  Google Scholar 

  3. Wang K, Liu Y, Huang C-W, Cheng P (2020) Adaptive backstepping control with extended state observer for wheeled mobile robot. In: Proceedings of 39th Chinese control conference, pp 1–6

    Google Scholar 

  4. Park BS, Yoo SJ, Park JB, Choi YH (2010) A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots. IEEE Trans Control Syst Technol 18(5):1199–1206

    Article  Google Scholar 

  5. Huang JS, Wen CY, Wang W, Jiang Z-P (2014) Adaptive output feedback tracking control of a nonholonomic mobile robot. Automatica 50(3):821–831

    Article  MathSciNet  MATH  Google Scholar 

  6. Al Jleilaty H, Asmar D, Daher N (2019) Model reference adaptive control of a two-wheeled mobile robot. In: Proceedings of 2019 international conference on robotics and automation, pp 1–6

    Google Scholar 

  7. Chwa DK (2012) Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances. IEEE Trans Fuzzy Syst 20(3):587–593

    Article  Google Scholar 

  8. Zhou DJ, Shi MH, Chao F, Lin C-M, Yang LZ, Shang CJ, Zhon CL (2018) Use of human gestures for controlling a mobile robot via adaptive CMAC network and fuzzy logic controller. Neurocomputing 232:218–231

    Article  Google Scholar 

  9. Blažič S (2014) On periodic control laws for mobile robots. IEEE Trans Ind Electron 61(7):3660–3670

    Article  Google Scholar 

  10. Li ZJ, Deng J, Lu RQ, Xu Y, Bai JJ, Su C-Y (2016) Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Trans Syst Man Cybern Syst 46(6):740–749

    Article  Google Scholar 

  11. Chen D-C, Li S, Wu Q (2020) A novel supertwisting zeroing neural network with application to mobile robot manipulators. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.2991088

    Article  Google Scholar 

  12. Chen Z-Y, Liu Y, He W, Qiao H, Ji H (2020) Adaptive neural network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2020.2989711

  13. Mac TT, Copot C, Tran DT, De Keyser R (2016) Heuristic approaches in robot path planning: a survey. Robot Auton Syst 86:13–28

    Article  Google Scholar 

  14. Yang YJ, Pan J, Wan WW (2019) Survey of optimal motion planning. IET Cyber-Syst Robot 1(1):13–19

    Article  Google Scholar 

  15. Purcaru C, Precup R-E, Iercan D, Fedorovici L-O, Petriu EM, Voisan E-I (2013) Multi-robot GSA- and PSO-based optimal path planning in static environments. In: Proceedings of 9th international workshop on robot motion and control, pp 197–202

    Google Scholar 

  16. Muñoz DM, Llanos CH, dos Santos Coelho L, Ayala-Rincón M (2014) Hardware opposition-based PSO applied to mobile robot controllers. Eng Appl Artif Intell 28:64–77

    Article  Google Scholar 

  17. Ma Y, Wang H, Xie Y, Guo M (2014) Path planning for multiple mobile robots under double-warehouse. Inf Sci 278:357–379

    Article  MathSciNet  MATH  Google Scholar 

  18. Mac TT, Copot C, Tran DT, De Keyser R (2017) A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization. Appl Soft Comput 59:68–76

    Article  Google Scholar 

  19. Lim RS, La HM, Sheng W (2014) A robotic crack inspection and mapping system for bridge deck maintenance. IEEE Trans Autom Sci Eng 11(2):367–378

    Article  Google Scholar 

  20. Lee JS, Kim D-W (2016) An effective initialization method for genetic algorithm-based robot path planning using a directed acyclic graph. Inf Sci 332:1–18

    Article  Google Scholar 

  21. Lamini C, Benhlima S, Elbekri E (2018) Genetic algorithm based approach for autonomous mobile robot path planning. Procedia Comput Sci 127:180–189

    Article  Google Scholar 

  22. Purcaru C, Precup R-E, Iercan D, Fedorovici L-O, David R-C, Dragan F (2013) Optimal robot path planning using gravitational search algorithm. Int J Artifl Intell 10(S13):1–20

    Google Scholar 

  23. Das PK, Behera HS, Jena PK, Panigrahi BK (2016) Multi-robot path planning in a dynamic environment using improved gravitational search algorithm. J Electr Syst Inf Technol 3(2):295–313

    Article  Google Scholar 

  24. Melin P, Astudillo L, Castillo O, Valdez F, Garcia M (2013) Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm. Expert Syst Appl 40(8):3185–3195

    Article  Google Scholar 

  25. Hidalgo-Paniagua A, Vega-Rodríguez MA, Nieves Pavón JF (2017) Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach. Soft Comput 21(4):949–964

    Article  Google Scholar 

  26. Precup R-E, Petriu EM, Fedorovici L-O, Radac M-B, Dragan F (2014) Multi-robot charged system search-based optimal path planning in static environments. In: Proceedings of 2014 IEEE multi-conference on systems and control, pp 1912–1917

    Google Scholar 

  27. Precup R-E, Petriu EM, Radac M-B, Voisan E-I, Dragan F (2015) Adaptive charged system search approach to path planning for multiple mobile robots. IFAC-PapersOnLine 48(10):294–299

    Article  Google Scholar 

  28. Porta García MA, Montiel O, Castillo O, Sepúlveda R, Melin P (2009) Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl Soft Comput 9(3):1102–1110

    Article  Google Scholar 

  29. Zhang WB, Gong XP, Han G, Zhao YT (2017) An improved ant colony algorithm for path planning in one scenic area with many spots. IEEE Access 5:13260–13269

    Article  Google Scholar 

  30. Liu JH, Yang JG, Liu HP, Tian XJ, Gao M (2017) An improved ant colony algorithm for robot path planning. Soft Comput 21(9):5829–5839

    Article  Google Scholar 

  31. Amador-Angulo L, Mendoza O, Castro JR, Rodríguez Díaz A, Melin P, Castillo O (2016) Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. Sensors 16(9):1458

    Google Scholar 

  32. Radmanesh M, Kumar M, Sarim M (2018) Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment. Aerosp Sci Technol 77:168–179

    Google Scholar 

  33. Dewangan RK, Shukla A, Godfrey WW (2019) Three dimensional path planning using grey wolf optimizer for UAVs. Appl Intell 49(6):2201–2217

    Article  Google Scholar 

  34. Ge F-W, Li K, Xu W-S, Wang Y (2019) Path planning of UAV for oilfield inspection based on improved grey wolf optimization algorithm. In: Proceedings of 2019 Chinese control and decision conference, pp 1–6

    Google Scholar 

  35. dos Santos Coelho, L., Nedjah, N., Macedo Mourelle, L.: Differential evolution approach using chaotic sequences applied to planning of mobile robot in a static environment with obstacles. In: Mobile robots. Springer, pp 3–22

    Google Scholar 

  36. Das PK, Behera HS, Jena PK, Panigrahi BK (2016) A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evolut Comput 28:14–28

    Article  Google Scholar 

  37. Mls K, Cimler R, Vaščák J, Puheim M (2017) Interactive evolutionary optimization of fuzzy cognitive maps. Neurocomputing 232:58–68

    Google Scholar 

  38. Chen C-H, Jeng S-Y, Lin C-J (2020) Mobile robot wall-following control using fuzzy logic controller with improved differential search and reinforcement learning. Mathematics 8:1254

    Google Scholar 

  39. Kovács B, Szayer G, Tajti F, Burdelis M, Korondi P (2016) A novel potential field method for path planning of mobile robots by adapting animal motion attributes. Robot Auton Syst 82:24–34

    Article  Google Scholar 

  40. Jiang J, Zeng X, Guzzetti D, You Y (2020) Path planning for asteroid hopping rovers with pre-trained deep reinforcement learning architectures. Acta Astron 171:265–279

    Article  Google Scholar 

  41. Precup R-E, David R-C (2019) Nature-inspired optimization algorithms for fuzzy controlled servo systems. Butterworth-Heinemann, Elsevier

    Google Scholar 

  42. Azizi M, Ejlali RG, Mousavi Ghasemi SA, Talatahari S (2019) Upgraded whale optimization algorithm for fuzzy logic based vibration control of nonlinear steel structure. Eng Str 192:53–70

    Article  Google Scholar 

  43. David R-C, Precup R-E, Preitl S, Szedlak-Stinean A-I, Roman R-C, Petriu EM (2020) Design of low-cost fuzzy controllers with reduced parametric sensitivity based on whale optimization algorithm. In: Proceedings of 2020 IEEE international conference on fuzzy systems, pp 1–6

    Google Scholar 

  44. David R-C, Precup R-E, Preitl S, Petriu EM, Szedlak-Stinean A-I, Roman R-C (2020) Whale optimization algorithm-based tuning of low-cost fuzzy controllers with reduced parametric sensitivity. In: Proceedings of 28th mediterranean conference on control and automation, pp 440–445

    Google Scholar 

  45. Osaba E, Del Ser J, Sadollah A, Bilbao MN, Camacho D (2018) A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem. Appl Soft Comput 71:277–290

    Article  Google Scholar 

  46. Osaba E, Yang XS, Fister I Jr, Del Ser J, Lopez-Garcia P, Vazquez-Pardavila AJ (2019) A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection. Swarm Evolut Comput 44:273–286

    Article  Google Scholar 

  47. Johanyák ZC (2017) A modified particle swarm optimization algorithm for the optimization of a fuzzy classification subsystem in a series hybrid electric vehicle. Technicki Vjesnik - Technical Gazette 24(2):295–301

    Google Scholar 

  48. Zapata H, Perozo N, Angulo W, Contreras J (2020) A hybrid swarm algorithm for collective construction of 3D structures. Int J Artif Intell 18(1):1–18

    Google Scholar 

  49. Moattari M, Moradi MH (2020) Conflict monitoring optimization heuristic inspired by brain fear and conflict systems. Int J Artif Intell 18(1):45–62

    Google Scholar 

  50. La Fe-Perdomo I, Beruvides G, Quiza R, Haber R, Rivas M (2019) Automatic selection of optimal parameters based on simple soft-computing methods: a case study of micromilling processes. IEEE Trans Ind Inform 15(2):800–811

    Article  Google Scholar 

  51. Precup R-E, Preitl S, Szabo C, Korondi P, Szemes P (2005) On some low-cost tracking controllers for mobile robots. Control Intell Syst 33(1):1–12

    MATH  Google Scholar 

  52. Precup R-E, David R-C, Petriu EM, Szedlak-Stinean A-I, Bojan-Dragos C-A (2016) Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity. IFAC-PapersOnLine 49(5):55–60

    Article  Google Scholar 

  53. Precup R-E, David R-C, Szedlak-Stinean A-I, Petriu EM, Dragan F (2017) An easily understandable grey wolf optimizer and its application to fuzzy controller tuning. Algorithms 10(2):68

    Google Scholar 

  54. Roman R-C, Precup R-E, David R-C (2018) Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems. Procedia Comput Sci 139:372–380

    Article  Google Scholar 

  55. Preitl S, Precup R-E (1996) On the algorithmic design of a class of control systems based on providing the symmetry of open-loop Bode plots. Sci Bull UPT, Trans Autom Control Comput Sci 41(55)(2):47–55

    Google Scholar 

  56. Preitl S, Precup R-E (1999) An extension of tuning relations after symmetrical optimum method for PI and PID controllers. Automatica 35(10):1731–1736

    Article  MATH  Google Scholar 

  57. Galichet S, Foulloy L (1995) Fuzzy controllers: synthesis and equivalences. IEEE Trans Fuzzy Syst 3(2):140–148

    Article  MATH  Google Scholar 

  58. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  59. Dzitac I, Filip FG, Manolescu MJ (2017) Fuzzy logic is not fuzzy: world-renowned computer scientist Lotfi A. Zadeh. Int J Comput Commun Control 12(6):748–789

    Google Scholar 

  60. Baranyi P, Korondi P, Patton RJ, Hashimoto H (2004) Trade-off between approximation accuracy and complexity for TS fuzzy models. Asian J Control 6(1):21–33

    Article  Google Scholar 

  61. Angelov P, Škrjanc I, Blažič S (2013) Robust evolving cloud-based controller for a hydraulic plant. In: Proceedings of the 2013 IEEE conference on evolving and adaptive intelligent systems, pp 1–8

    Google Scholar 

  62. Precup R-E, Teban T-A, Albu A, Borlea A-B, Zamfirache IA, Petriu EM (2020) Evolving fuzzy models for prosthetic hand myoelectric-based control. IEEE Trans Instrum Meas 69(7):4625–4636

    Article  Google Scholar 

  63. Shi Q, Lam H-K, Xuan C-B, Chen M (2020) Adaptive neuro-fuzzy PID controller based on twin delayed deep deterministic policy gradient algorithm. Neurocomputing 402:183–194

    Article  Google Scholar 

  64. Preitl S, Precup R-E, Preitl Z, Vaivoda S, Kilyeni S, Tar JK (2007) Iterative feedback and learning control. Servo systems applications. IFAC Proc Vol 40(8):16–27

    Google Scholar 

  65. Chi R-H, Hui Y, Zhang S-H, Huang B, Hou Z-S (2020) Discrete-time extended state observer-based model-free adaptive control via local dynamic linearization. IEEE Trans Ind Electron 67(10):8691–8701

    Google Scholar 

  66. Lucchini A, Formentin S, Corno M, Piga D, Savaresi SM (2020) Torque vectoring for high-performance electric vehicles: a data-driven MPC approach. IEEE Control Syst Lett 4(3):725–730

    Article  MathSciNet  Google Scholar 

  67. Precup R-E, Preitl S (1999) Development of some fuzzy controllers with non-homogenous dynamics with respect to the input channels meant for a class of systems. In: Proceedings of 1999 European control conference, pp 61–66

    Google Scholar 

  68. Precup R-E, Preitl S (2003) Development of fuzzy controllers with non-homogeneous dynamics for integral-type plants. Electr Eng 85(3):155–168

    Article  Google Scholar 

  69. Precup R-E, Preitl S, Petriu EM, Tar JK, Tomescu ML, Pozna C (2009) Generic two-degree-of-freedom linear and fuzzy controllers for integral processes. J Frankl Inst 346(10):980–1003

    Article  MathSciNet  MATH  Google Scholar 

  70. Preitl S, Stinean A-I, Precup R-E, Preitl Z, Petriu EM, Dragos C-A, Radac M-B (2012) Controller design methods for driving systems based on extensions of symmetrical optimum method with DC and BLDC motor applications. IFAC Proc Vol 45(3):264–269

    Article  Google Scholar 

  71. Andoga R, Főző L, Judičák J, Bréda R, Szabo S, Rozenberg R, Džunda M (2018) Intelligent situational control of small turbojet engines. Int J Aerosp Eng 2018:8328792

    Google Scholar 

  72. Michail K, Deliparaschos KM, Tzafestas SG, Zolotas AC (2016) AI-based actuator/sensor fault detection with low computational cost for industrial applications. IEEE Trans Control Syst Technol 24(1):293–301

    Article  Google Scholar 

  73. Costin H, Rotariu C, Alexa I, Constantinescu G, Cehan V, Dionisie B, Andruseac G, Felea V, Crauciuc E, Scutariu M (2009) TELEMON—A complex system for real time medical telemonitoring. In: Proceedings of 11th international congress of the IUPESM/world congress on medical physics and biomedical engineering, Munich, pp 92–95

    Google Scholar 

  74. Pozna C, Precup R-E (2014) Applications of signatures to expert systems modeling. Acta Polytech Hung 11(2):21–39

    Google Scholar 

  75. Ouadine AY, Mjahed M, Ayad H, El Kari A (2020) UAV quadrotor fault detection and isolation using artificial neural network and Hammerstein-Wiener model. Stud Inform Control 29(3):317–328

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the grants from the UEFISCDI of the Ministry of Research and Innovation, Romania, project numbers PN-III-P4-ID-PCE-2020-0269, PN-III-P1-1.1-PD-2019-0637, PN-III-P1-1.1-PD-2016-0331, PN-III-P1-1.1-TE-2019-1117, PN-III-P2-2.1-PTE-2019-0694, within PNCDI III, and by the NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu-Emil Precup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Precup, RE. et al. (2021). Nature-Inspired Optimization Algorithms for Path Planning and Fuzzy Tracking Control of Mobile Robots. In: Osaba, E., Yang, XS. (eds) Applied Optimization and Swarm Intelligence. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-16-0662-5_7

Download citation

Publish with us

Policies and ethics