Skip to main content

Overview of Current Additive Manufacturing Technologies for Titanium Bioimplants

  • Chapter
  • First Online:
Nanoscale Engineering of Biomaterials: Properties and Applications

Abstract

Titanium (Ti) and its alloys are the common biometals used for the manufacturing of various bioimplants for orthopedic and dental applications. These biometals are having fascinating physical and biological properties, such as high mechanical strength, high corrosion resistance and excellent biocompatibility. Commercially available pure titanium (CP-Ti) and (α + β)Ti-6Al-4 V are few typical Ti-commercially available biometals used for manufacturing of Ti-bioimplants. Recently, β-titanium with low modulus and innocuous elemental composition has been evolved as a new group of Ti for manufacturing bioimplants for specific orthopedic applications. Ti-bioimplants are manufactured via non-economic and conventional subtractive machining processes. Advanced manufacturing techniques, such as additive manufacturing (AM) provides an ideal platform to investigate and create more customized and complex bioimplant with porous structures. In addition, AM manufactured bioimplants have shown enhanced osseointegration over the preceding generation Ti-biomplants. This chapter reviews the current AM-technologies for manufacturing of Ti-bioimplants with an emphasis on processing parameters, developed microstructure and associated mechanical properties of the final product. The chapter also highlights the effect of porous structure on the mechanical performances of the manufactured Ti-bioimplants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan MN, Paul CP, Kukreja LM, Pinkerton AJ (2011) Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation. J Mater Process Technol 211(4):602–609

    CAS  Google Scholar 

  • Attar H, Ehtemam-Haghighi S, Soro N, Kent D, Dargusch MS (2020) Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development. J Alloys Compd 827:154263

    CAS  Google Scholar 

  • Bǎrbînţǎ AC, Earar K, Crimu CI, Drǎgan LA, Munteanu C (2014) In vitro evaluation of the cytotoxicity of some new titanium alloys. Key Eng Mater 587:303–308

    Google Scholar 

  • Bhardwaj T, Shukla M, Paul CP, Bindra KS (2019) Direct energy deposition - laser additive manufacturing of titanium-molybdenum alloy: parametric studies, microstructure and mechanical properties. J Alloys Compd 787:1238–1248

    CAS  Google Scholar 

  • Bordji K, Jouzeau JY, Mainard D, Payan E, Delagoutte JP, Netter P (1996) Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Biomaterials 17(5):491–500

    CAS  PubMed  Google Scholar 

  • Bosco R, Van Den Beucken JV, Leeuwenburgh S, Jansen J (2012) Surface engineering for bone implants: a trend from passive to active surfaces. Coatings 2(3):95–119

    CAS  Google Scholar 

  • Chakraborty R, Raza MS, Datta S, Saha P (2019) Synthesis and characterization of nickel free titanium–hydroxyapatite composite coating over Nitinol surface through in-situ laser cladding and alloying. Surf Coatings Technol 358:539–550

    CAS  Google Scholar 

  • Costa BC, Tokuhara CK, Rocha LA, Oliveira RC, Lisboa-Filho PN, Costa Pessoa J (2019) Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. Mater Sci Eng C 96:730–739

    CAS  Google Scholar 

  • Cremasco A, Messias AD, Esposito AR, Duek EADR, Caram R (2011) Effects of alloying elements on the cytotoxic response of titanium alloys. Mater Sci Eng C 31(5):833–839

    CAS  Google Scholar 

  • Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5(10):701–711

    CAS  Google Scholar 

  • Elias CN, Fernandes DJ, De Souza FM, Monteiro EDS, De Biasi RS (2019) Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications. J Mater Res Technol 8(1):1060–1069

    CAS  Google Scholar 

  • Fousová M, Vojtěch D, Kubásek J, Jablonská E, Fojt J (2017) Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J Mech Behav Biomed Mater 69:368–376

    PubMed  Google Scholar 

  • Gao SY, Zhang YZ, Shi LK, Du BL, Xi MZ, Ji HZ (2007) Research on laser direct deposition process of Ti-6Al-4V alloy. Acta Metallurgica Sinica (English Letters) 20(3):171–180

    CAS  Google Scholar 

  • Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1:87–98

    Google Scholar 

  • Gu XN et al (2017) Degradation, hemolysis, and cytotoxicity of silane coatings on biodegradable magnesium alloy. Mater Lett 193:266–269

    CAS  Google Scholar 

  • Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24(6–8 Spec. Iss.):745–752

    Google Scholar 

  • Hao YL, Li SJ, Yang R (2016) Biomedical titanium alloys and their additive manufacturing. Rare Met 35(9):661–671

    CAS  Google Scholar 

  • Hermawan H, Ramdan D, Djuansjah JR (2011) Metals for biomedical applications. In: Biomedical engineering from theory to applications, vol 1, pp 411–430

    Google Scholar 

  • ISAAC ANDERSON. Electron beam melting. https://www.isaacanderson.co.uk/portfolio/electron-beam-melting

  • Junker D, Hentschel O, Schmidt M, Merklein M (2018) Investigation of heat treatment strategies for additively-manufactured tools of X37CrMoV5-1. Metals (Basel) 8(10):1–13

    CAS  Google Scholar 

  • Koike M, Lockwood PE, Wataha JC, Okabe T (2007) Initial cytotoxicity of novel titanium alloys. J Biomed Mater Res B Appl Biomater 83(2):327–331

    CAS  PubMed  Google Scholar 

  • Kumar A, Biswas K, Basu B (2015) Hydroxyapatite-titanium bulk composites for bone tissue engineering applications. J Biomed Mater Res A 103(2):791–806

    PubMed  Google Scholar 

  • Li X, Wang C, Wang L, Zhang W, Li Y (2010) Fabrication of bioactive titanium with controlled porous structure and cell culture in vitro. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met Mater Eng 39(10):1697–1701

    CAS  Google Scholar 

  • Liu CF, Lee TH, Liu JF et al (2018) A unique hybrid-structured surface produced by rapid electrochemical anodization enhances bio-corrosion resistance and bone cell responses of β-type Ti-24Nb-4Zr-8Sn alloy. Sci Rep 8:6623. https://doi.org/10.1038/s41598-018-24590-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LH et al (2015) Ultrafine grained Ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure. Mater Des 79:1–5

    CAS  Google Scholar 

  • Liu YJ et al (2017) Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater 126:58–66

    CAS  Google Scholar 

  • Liu W et al (2019) Surface modification of biomedical titanium alloy: micromorphology, microstructure evolution and biomedical applications. Adv Eng Mater 9(4):249

    CAS  Google Scholar 

  • Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC (2013) An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res A 101(11):3349–3364

    PubMed  PubMed Central  Google Scholar 

  • Marin E, Fusi S, Pressacco M, Paussa L, Fedrizzi L (2010) Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium. J Mech Behav Biomed Mater 3(5):373–381

    CAS  PubMed  Google Scholar 

  • Reiff, C, Wulle, F, Riedel, O, Epple, S, Onuseit, V (2018) On inline process control for selective laser sintering. In: Eighth international conference on mass customization and personalisation – community of Europe (MCP-CE 2018), vol 141, pp 230–239

    Google Scholar 

  • Ryu DJ et al (2020) Titanium porous coating using 3D direct energy deposition (DED) printing for cementless TKA implants: does it induce chronic inflammation? Materials (Basel) 13(2):1–13

    Google Scholar 

  • Schulze C, Weinmann M, Schweigel C, Keßler O, Bader R (2018) Mechanical properties of a newly additive manufactured implant material based on Ti-42Nb. Materials (Basel) 11(1):13–16

    Google Scholar 

  • Shi Q, Qian Z, Liu D, Liu H (2017) Surface modification of dental titanium implant by layer-by-layer electrostatic self-assembly. Front Physiol 8:1–7

    Google Scholar 

  • Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov 5(1):16–40

    Google Scholar 

  • Stavropoulos P, Foteinopoulos P (2018) Modelling of additive manufacturing processes: a review and classification. Manuf Rev 5:2

    Google Scholar 

  • Taljanovic MS et al (2003) Joint arthroplasties and prostheses. Radiographics 23(5):1295–1314

    PubMed  Google Scholar 

  • Telang VS, Pemmada R, Thomas V, Ramakrishna S, Tandon P, Nanda HS (2021) Harnessing additive manufacturing for magnesium based metallic bioimplants: recent advances and future perspectives. Curr Opin Biomed Eng 17:100264

    CAS  Google Scholar 

  • Trevisan F et al (2018) Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater 16(2):57–67

    CAS  PubMed  Google Scholar 

  • Wang Z, Xiao Z, Tse Y, Huang C, Zhang W (2019) Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy. Opt Laser Technol 112:159–167

    Google Scholar 

  • Woo WS, Kim EJ, Jeong HI, Lee CM (2020) Laser-assisted machining of Ti-6Al-4V fabricated by DED additive manufacturing. Int J Precis Eng Manuf Green Technol 7(3):559–572

    Google Scholar 

  • Wu Z et al (2017) Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers (Basel) 9(3):1–19

    CAS  Google Scholar 

  • Zafar MS, Farooq I, Awais M, Najeeb S, Khurshid Z, Zohaib S (2019) Bioactive surface coatings for enhancing osseointegration of dental implants. Elsevier, Amsterdam

    Google Scholar 

  • Zhang LC, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 18(4):463–475

    CAS  Google Scholar 

  • Zhang F, Weidmann A, Nebe BJ, Burkel E (2009) Preparation of TiMn alloy by mechanical alloying and spark plasma sintering for biomedical applications. J Phys Conf Ser 144:012007

    Google Scholar 

  • Zhou B, Zhou J, Li H, Lin F (2018) A study of the microstructures and mechanical properties of Ti6Al4V fabricated by SLM under vacuum. Mater Sci Eng A 724:1–10

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himansu Sekhar Nanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Telang, V.S., Pemmada, R., Ramakrishna, S., Tandon, P., Nanda, H.S. (2022). Overview of Current Additive Manufacturing Technologies for Titanium Bioimplants. In: Pandey, L.M., Hasan, A. (eds) Nanoscale Engineering of Biomaterials: Properties and Applications . Springer, Singapore. https://doi.org/10.1007/978-981-16-3667-7_5

Download citation

Publish with us

Policies and ethics