Skip to main content

Classification of Ultrasound Thyroid Nodule Images by Computer-Aided Diagnosis: A Technical Review

  • Conference paper
  • First Online:
Computational Vision and Bio-Inspired Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1318))

Abstract

The thyroid is an indispensable gland of the human endocrine system that secretes hormones which have a significant effect on the metabolic rate and protein synthesis. The thyroid is susceptible to a variety of disorders. One among them is the formation of a thyroid nodule, an extraneous mass formed at the thyroid gland requiring medical attention and diagnosis. About 5–10 nodules out of 100 are malignant (cancerous). When a formation of nodules is discernible to the doctors, they call for a diagnostic blood test, often perfunctory, and do not differentiate malignant and benign tumours. This is where ultrasonography comes across as a better option. Automation of ultrasonography diagnosis results in a decrease in reporting time as well as provides a provisional diagnosis before the doctors’ expert opinion. Thus, deep learning methods were suggested and produced better results. Initially, region of interest (ROI) and feature extraction were done before applying machine learning models like support vector machines and multilayer perceptrons. Nevertheless, the feature selection required in machine learning methods was a long-drawn process, often involving the elements of trial and error. Deep convolutional neural networks along with histogram of gradients (HOG)-aided feature extraction which was used along classifiers have yielded high specificity and sensitivity values along with the accuracy. In this paper, we have studied and compared the efficacy of the application of various deep convolutional networks for the diagnosis of malignancy in thyroid nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Horvath, S. Majlis, R. Rossi, C. Franco, J.P. Niedmann, A. Castro, M. Dominguez, An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J. Clin. Endocrinol. Metabol. 94(5), 1748–1751 (2009). https://doi.org/10.1210/jc.2008-1724

  2. H.A. Ansari, S.M. Vasentwala, N. Saeed, K. Akhtar, S. Rehman, Diagnostic approach to thyroid nodules. Annals Int. Med. Dental Res. (2016). https://doi.org/10.21276/aimdr.2016.2.6.PT1

    Article  Google Scholar 

  3. G. Popoveniuc, J. Jonklaas, Thyroid nodules. Med. Clin. North Am. 96(2), 329–349 (2012). https://doi.org/10.1016/j.mcna.2012.02.002.PMID:22443979;PMCID:PMC3575959

    Article  Google Scholar 

  4. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995). https://doi.org/10.1007/978-1-4757-3264-1

  5. N.H. Sweilam, A.A. Tharwat, N.K. Abdel, Support vector machine for diagnosis cancer disease: a comparative study. Egypt. Inform. J. 11(2), 81–92 (2010). https://doi.org/10.1016/j.eij.2010.10.005

  6. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN ‘95—International Conference on Neural Networks, vol. 4 (Perth, WA, Australia, 1995), pp. 1942–194848. https://doi.org/10.1109/ICNN.1995.488968

  7. X. Fu, W. Liu, B. Zhang, H. Deng, Quantum behaved particle swarm optimization with neighborhood search for numerical optimization. Math. Probl. Eng. Article ID 469723, 10 pp. (2013). https://doi.org/10.1155/2013/469723

  8. M.H. Nguyen, F.D.L. Torre, Optimal feature selection for support vector machines. Pattern Recogn. 43(3) (2010). https://doi.org/10.1016/j.patcog.2009.09.003

  9. M.-L. Huang, Y.-H. Hung, W.M. Lee, B.-R. Jiang, SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Sci. World J. Article ID 795624. https://doi.org/10.1155/2014/795624

  10. Z. Lai, H.F. Deng, Medical image classification based on deep features extracted by deep model and static feature fusion with multilayer perceptron. Comput. Intell. Neurosci. Article ID 2061516. https://doi.org/10.1155/2018/2061516

  11. V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in Proceedings of the 27th International Conference on Machine Learning (Haifa, 2010), pp. 807–814

    Google Scholar 

  12. S. Belarouci, M. Chikh, Medical imbalanced data classification. Adv. Sci. Technol. Eng. Syst. J. 2, 116–124. https://doi.org/10.25046/aj020316

  13. D.-Z. Feng, Z. Bao, L.-C. Jiao, Total least mean squares algorithm. IEEE Trans. Signal Process. 46(8), 2122–2130 (1998). https://doi.org/10.1109/78.705421

    Article  Google Scholar 

  14. X.-Y. Liu, J.X. Wu, Z.-H. Zhou, Exploratory under-sampling for class-imbalance learning, in Proceedings of the 6th International Conference on Data Mining (ICDM ‘06) (IEEE, Hong Kong, 2006), pp. 965–969

    Google Scholar 

  15. H. He, E.A. Garcia, Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  16. C. Sun, A. Shrivastava, S. Singh, H. Mulam, Revisiting unreasonable effectiveness of data in deep learning era, in IEEE International Conference on Computer Vision (ICCV) (2017), pp. 843–852. https://doi.org/10.1109/ICCV.2017.97

  17. M.A. Tanner, H.W. Wing, The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82(398), 528–540 (1987). https://doi.org/10.2307/2289457

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Kim, J. Park, H.-Y. Jung, An efficient color space for deep-learning based traffic light recognition. J. Adv. Transp. (2018), pp. 1–12. https://doi.org/10.1155/2018/2365414

  19. Z. Hussain, F. Gimenez, D. Yi, D. Rubin, Differential data augmentation techniques for medical imaging classification tasks, in AMIA ... Annual Symposium Proceedings. AMIA Symposium (2017), pp. 979–984

    Google Scholar 

  20. R. Lee, F. Gimenez, A. Hoogi, K. Miyake, M. Gorovoy, D. Rubin, A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4, 170177 (2017). https://doi.org/10.1038/sdata.2017.177

  21. S. Karen, Z. Andrew, Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556v6

  22. N. Tajbakhsh, J. Shin, S. Gurudu, R.T. Hurst, M.B. Gotway, J. Liang, Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016). https://doi.org/10.1109/TMI.2016.2535302

    Article  Google Scholar 

  23. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (2014). https://doi.org/10.1007/s11263-015-0816-y

    Article  Google Scholar 

  24. R. Dhaya, Deep net model for detection of Covid-19 using radiographs based on ROC analysis. J. Innov. Image Process. (JIIP) 2(03), 135–140 (2020)

    Article  Google Scholar 

  25. F. Abdolali, J. Kapur, J.L. Jaremko, M. Noga, A.R. Hareendranathan, K. Punithakumar, Automated thyroid nodule detection from ultrasound imaging using deep convolutional neural networks. Comput. Biol. Med. 122, 103871 (2020). https://doi.org/10.1016/j.compbiomed.2020.103871

    Article  Google Scholar 

  26. K.V.S. Sundar, K. Rajamani, S. Sai, Exploring image classification of thyroid ultrasound images using deep learning, in Published in Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB) (2019). https://doi.org/10.1007/978-3-030-00665-5_151

  27. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, 2016), pp. 2818–2826. https://doi.org/10.1109/CVPR.2016.308

  28. T. Liu, S. Xie, J. Yu, L. Nia, W. Sun, Classification of thyroid nodules in ultrasound images using deep model based transfer learning and hybrid features, in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (New Orleans, LA, 2017), pp. 919–923. https://doi.org/10.1109/ICASSP.2017.7952290

  29. O. Mouse, Khachnaoui, R. Guetari, N. Khlifa, Thyroid nodules classification and diagnosis in ultrasound images using fine-tuning deep convolutional neural network. Int. J. Imag. Syst. Technol. 30(1) (2019). https://doi.org/10.1002/ima.22363

  30. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, 2016), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

  31. M. Zhou, R. Wang, P. Fu, Y. Bai, L. Cui, Automatic malignant thyroid nodule recognition in ultrasound images based on deep learning, in E3S Web Conference (2020). https://doi.org/10.1051/e3sconf/202018503021

  32. O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation, in N. Navab, J. Hornegger, W. Wells, A. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351 (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-24574-4_28

  33. D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes. CoRR, abs/1312.6114

    Google Scholar 

  34. D. Avola, L. Cinque, A. Fagioli, S. Filetti, G. Grani, E. Rodol, Knowledge-driven learning via experts consult for thyroid nodule classification, 28 May 2020. arXiv:2005.14117v1 [eess. IV]

  35. G. Huang, Z. Liu, L. Maaten, K. Weinberger, Densely Connected Convolutional Networks (Cornell University paper, 2018). arXiv:1608.06993v5

  36. Y. Chai, J. Song, M. Shear, Artificial Intelligence for thyroid nodule ultrasound image analysis. Annals Thyroid 5 (2020). https://aot.amegroups.com/article/view/5429

  37. K.C. Aishwarya, S. Gannamaneni, G. Gowda, A. Abhishiek, TIRADS classification of thyroid nodules: a pictorial review. Int. J. Med. Res. 4(2), 35–40 (2019). www.medicinesjournal.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Malathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baldota, S., Malathy, C. (2021). Classification of Ultrasound Thyroid Nodule Images by Computer-Aided Diagnosis: A Technical Review. In: Smys, S., Tavares, J.M.R.S., Bestak, R., Shi, F. (eds) Computational Vision and Bio-Inspired Computing. Advances in Intelligent Systems and Computing, vol 1318. Springer, Singapore. https://doi.org/10.1007/978-981-33-6862-0_30

Download citation

Publish with us

Policies and ethics