Skip to main content
Log in

Thermomechanical coupling effects on fractured solids

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An analytical model is presented to predict the temperature field induced in a fractured solid by mechanical loadings. The heat conduction equation used to compute the temperature field consists of three separate terms that account for the coupling effects. These are the thermoelastic, thermoplastic and thermofracture coupling terms. Finite element formulations were used for the numerical solutions of a case study. This case study involved experimental assessments of temperature rises near the tip of a stationary crack when subjected to an impact load that attempted to open the crack surfaces. Good correlations of analytical and experimental results were obtained. The measurable temperature rises in a fractured solid suggested that the coupling effect may be significant enough to influence the fracture characteristics of a solid; in particular, if the bulk temperature of the solid is close to the transition temperature from the brittle to ductile fracture mode or vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Schonert and R.Weichert, Chemie Ingenieur Technik 41 (1969) 295.

    Google Scholar 

  2. P.G.Fox and J.Soria-Ruiz, Proceedings, Royal Society London A 317 (1970) 79–90.

    Google Scholar 

  3. R.Weichert and K.Schonert, Journal of the Mechanics and Physics of Solids 22 (1974) 127–133.

    Google Scholar 

  4. R.Weichert and K.Schonert, Journal of the Mechanics and Physics of Solids 26 (1978) 151–161.

    Google Scholar 

  5. G.T.Hahn, R.G.Hoagland, A.R.Rosenfield and R.Sejnoha, Metallurgical Transactions 5 (1974) 475–482.

    Google Scholar 

  6. K.N.G.Fuller, P.G.Fox and J.E.Field, Proceedings, Royal Society, London A 341 (1975) 537–557.

    Google Scholar 

  7. J.T. Norris, Undergraduate Honors Thesis, Union College, Department of Mechanical Engineering, Schenectady, N.Y. (1976).

  8. A. Kobayashi and H. Suemasu, in Composite Materials, K. Kawata and T. Akasaka (eds.), Proceedings Japan-U.S. Conference, Tokyo (1981) 339–346.

  9. Peter J.Loose and F.R.Brotzen, Metallurgical Transactions A 14A (1983) 1409–1419.

    Google Scholar 

  10. J.D.Bryant, D.D.Makel and H.G.F.Wilsdorf, Materials Science and Engineering 77 (1986) 85–93.

    Google Scholar 

  11. K.Sano, Journal of the Iron and Steel Institute of Japan, 77:2 (Feb. 1987) 380–386 (in Japanese).

    Google Scholar 

  12. T.R.Hsu, The Finite Element Method in Thermomechanics, George Allen and Unwin Ltd., London (1986).

    Google Scholar 

  13. A.Banas, T.R.Hsu and N.S.Sun, Journal of Thermal Stresses 10 (1987) 319–344.

    Google Scholar 

  14. J.R.Rice and N.Levy, in the Physics of Strength and Plasticity, A.S.Argon (ed.) MIT Press, Cambridge, MA (1969) 277.

    Google Scholar 

  15. Z.B.Kuang and S.N.Atluri, Journal of Applied Mechanics 52 (1985) 274–280.

    Google Scholar 

  16. S.N.Atluri, M.Nakagaki et al., Engineering Fracture Mechanics 23, No. 1 (1986) 167–182.

    Google Scholar 

  17. N. Sun, ‘The Analysis of the Thermomechanical Coupling Effect on Fractured Solid by the Finite Element Method’, Ph. D. dissertation, Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada (1991).

  18. J.R.Rice, Journal of the Mechanics and Physics of Solids 26 (1978) 61–78.

    Google Scholar 

  19. J.D.Landes and J.A.Begley, in Post-yield Fracture Mechanics, D.G.H.Latzko (ed.) Applied Science Publishers Ltd., London (1979) 211–253.

    Google Scholar 

  20. J.W.Dally, W.L.Fourney and G.R.Irwin, International Journal of Fracture 27 (1985) 159–168.

    Google Scholar 

  21. M.F.Kanninen and C.H.Popelar, Advanced Fracture Mechanics, Oxford University Press, New York (1985).

    Google Scholar 

  22. L.Y.Chao, D.Singh and D.K.Shetty, Journal of Engineering for Gas Turbines and Power 111 (Jan. 1989) 168–173.

    Google Scholar 

  23. K.J.Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Clifs, N. J. (1982).

    Google Scholar 

  24. O.C.Zienkiewicz, The Finite Element Method 3rd edn., McGraw-Hill, London (1977).

    Google Scholar 

  25. Thomas J. R.Hughes, The Finite Element Method, Prentice-Hall, New Jersey (1987) Ch. 4–6.

    Google Scholar 

  26. V.I.Krylov, Approximate Calculation of Integrals, McMillar Co., N. Y. (1962) Ch. 7.

    Google Scholar 

  27. Carl-Erik Froberg, Numerical Mathematics—Theory and Computer Applications, The Benjamin Inc. (1985) Ch. 5.

  28. C.F.Osgood and O.Shisha, Journal of Approximation Theory 17 (1976) 150–165.

    Google Scholar 

  29. D.E. McCabe, Fracture Toughness Evaluation by R-Curve Methods, ASTM STP 527 (1973).

  30. D.Broek, Engineering Fracture Mechanics 5 (1975) 45–53.

    Google Scholar 

  31. D.Broek, ‘The Residual Strength of Aluminium Sheet Alloy Specimens Containing Fatigue Cracks or Saw Cuts’, Tech. Rept. NRL-TRM. 2143, National Aerospace Laboratory, Amsterdam (1965).

    Google Scholar 

  32. D.Y. Wang and D.E. McCabe, ‘Investigation of R-curve Using Comparative Tests with CCT and CLWL Specimens,’ Presented at Eighth National Fracture Symposium, Brown University, August (1974).

  33. AyaldesJayatilaka, Fracture of Engineering Brittle Materials, Applied Science Publishers Ltd, London, UK (1979).

    Google Scholar 

  34. J.L.Nowinski, Theory of Thermoelasticity with Appreciation, European Printing Cooperation, Ireland (1978).

    Google Scholar 

  35. D. Rosenthat, Transactions of the ASME (1946) 849–866.

  36. W.A. Logsdon, Mechanics of Crack Growth, ASTM STP 590 (1976) 43–60.

  37. A.M. Sullivan, C.N. Freed and J. Stoop, Fracture Toughness Evaluation by R-Curve Methods, ASTM STP 527 (1973) 85–104.

  38. W.H. Cubbe, P.M. Unterweisei and C.W. Kirkpatrick, Metal Handbook, 9th edn., vol. 1, ASM (1978).

  39. J.E.Bailey, The Philosophical Magazine 8 (1963) 223.

    Google Scholar 

  40. J.M. Barsom and S.T. Rolfe, in Impact Testing of Metals, ASTM STP 466 (1970) 281–302.

  41. S.T.Rolfe and J.M.Barsom, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey (1977) Ch. 4.

    Google Scholar 

  42. J.R.Klepaczko, Journal of Engineering Mathematics and Technology 104 (1982) 29–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, N.S., Hsu, T.R. Thermomechanical coupling effects on fractured solids. Int J Fract 78, 67–87 (1996). https://doi.org/10.1007/BF00018501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018501

Keywords

Navigation