Skip to main content
Log in

On quarter-point three-dimensional finite elements in linear elastic fracture mechanics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Use of the finite element method for calculating stress intensity factors of two-dimensional cracked bodies has become commonplace. In this study, the more difficult task of applying finite elements to three-dimensional cracked bodies is investigated. Since linear elastic material is considered, square root singular stresses exist along the edge of an embedded crack. To deal with this numerical difficulty, twenty noded, isoparametric, serendipity, quarter-point, singular, solid elements are employed. Examination of these elements is carried out in order to determine the extent of the singular behavior.

In addition, the stiffness derivative technique is explored, together with quarter-point elements, to determine an accurate procedure for computing stress intensity factors in three-dimensions. The problem of chosing a proper virtual crack extension is addressed. To this end, the disturbance in the square root singular stresses is examined and compared with a similar disturbance which occurs in two-dimensions. As a numerical example, a pennyshaped crack in a finite height cylinder is considered with various meshes. It is found that stress intensity factors can be calculated to an accuracy within 1 percent when quarter-point cylindrical elements are employed with the stiffness derivative technique such that the crack extension is one in which one corner node is not moved, the other corner node is moved a small distance, and the midside node is moved one-half that distance. This crack extension is analogous to that of a straight crack advance for a brick element. Both of these crack advances disturb the square root singular stresses in a manner similar to that which occurs with the two-dimensional eight noded element in which the crack has been advanced a small distance.

Résumé

Il est devenu courant d'utiliser la méthode des éléments finis pour le calcul des facteurs d'intensité d'entaille de corps fissurés à deux dimensions. Dans l'étude, on se penche sur le problème plus difficile de l'application à des corps tridimensionnels fissurés. Comme on considère un matériau linéairement élastique, il existe des singularités de contraintes d'ordre 1/2 le long du bord d'une fissure noyée. Pour résoudre les difficultés numériques, on recourt à des éléments volumiques singuliers isoparamétriques à vingt noeuds, à configuration quart-points adaptée à la recherche. On procède à l'examen de ces éléments en vue de déterminer l'étendue du comportement singulier.

En outre, on explore, avec les éléments quart-points, la technique de la dérivée de la rigidité afin de déterminer un protocole fiable pour le calcul des facteurs d'intensité de contraintes en trois dimensions. On pose le problème du choix de l'étendue la plus adéquate d'une fissure virtuelle. A cette fin, la perturbation associée aux singularités de contraintes d'ordre 1/2 est étudiée et comparée à celle qui se présente à deux dimensions. On traite comme exemple numérique avec divers maillages le cas d'une fissure en ongle dans un cylindre de hauteur de hauteur finie. On trouve que les facteurs d'intensité de contraintes peuvent être calculés avec une précision de l'ordre de un pour-cent lorsqu'on fait appel à des éléments quart-points cylindriques avec la technique des dérivées de la rigidité, et à une extension de la fissure selon laquelle un noeud de coin est rigide, l'autre noeud de coin est déplacé sur une courte distance, et le noeud intermédiaire est mû sur la moitié de cette distance. Une telle extension de fissure est analogue à celle de l'avancement d'une fissure droite dans un élément cubique.

Ces deux types d'extension d'une fissure perturbent les singularités de contrainte d'ordre 1/2 d'une manière similaire à celle qui se produit avec un élément bidimensionnel à huit noeuds dans lequel la fissure a progressé sur une courte distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM Round Robin, “Fatigue Growth of Corner Cracks at Holes”, Task Group E24:06:01, presented November, 1983, Pittsburgh, Pennyslvania.

  2. R.S. Barsoum, International Journal of Fracture 10 (1974) 603–605.

    Google Scholar 

  3. R.S. Barsoum, International Journal for Numerical Methods in Engineering 10 (1976) 25–37.

    Google Scholar 

  4. R.S. Barsoum, International Journal for Numerical Methods in Engineering 11 (1977) 85–98.

    Google Scholar 

  5. A.R. Ingraffea and C. Manu, International Journal for Numerical Methods in Engineering 15 (1980) 1427–1445.

    Google Scholar 

  6. M.A. Hussain, L.F. Coffin and K.A. Zaleski, Journal of Computers and Structures 13 (1981) 594–599.

    Google Scholar 

  7. L. Banks-Sills, in “Analytical, Numerical and Experimental Aspects of Fracture Processes”, ASME-AMD 91 (1988) 89–97.

  8. L. Banks-Sills and D. Sherman, International Journal of Fracture 32 (1986) 127–140.

    Google Scholar 

  9. H.G. DeLorenzi, Engineering Fracture Mechanics 21 (1985) 129–143.

    Article  Google Scholar 

  10. F.Z. Li, C.F. Shih and A. Needleman, Engineering Fracture Mechanics 21 (1985) 405–421.

    Article  Google Scholar 

  11. D.M. Parks, International Journal of Fracture 10 (1974) 487–502.

    Google Scholar 

  12. J.S. Solecki and J.L. Swedlow, in ASTM-STP 868, American Society for Testing and Materials, Philadelphia (1985) 535–553.

    Google Scholar 

  13. K. Hertz, ISFEM-Israel Finite Element Modeler, Version 2.01, Israel (1985).

  14. K.J. Bathe, ADINA-Automatic Dynamic Incremental Nonlinear Analysis System, Adina Engineering Inc., USA. (1984).

    Google Scholar 

  15. I.S. Raju and J.C. Newman, Jr., Three-Dimensional Finite Element Analysis of Finite Thickness Fracture Specimens, NASA TN D-8414 (1977).

  16. L. Banks-Sills and D. Schur, “On the Influence of Crack Plane Orientation in Fatigue Crack Propagation”, to appear: ASTM-STP 1020.

  17. L. Banks-Sills and Y. Bortman, International Journal of Fracture 25 (1984) 169–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banks-Sills, L., Sherman, D. On quarter-point three-dimensional finite elements in linear elastic fracture mechanics. Int J Fract 41, 177–196 (1989). https://doi.org/10.1007/BF00018656

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018656

Keywords

Navigation