Skip to main content
Log in

Lake acidity, fish predation, and the distribution and abundance of some littoral insects

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Densities of Corixidae (Hemiptera), larval Odonata, and large larval Trichoptera were estimated in the littoral zone of small lakes in an acid-stressed area near Sudbury, Ontario. Fish were present in some lakes and absent in others, and fishless lakes occurred across a wide range of pH. Corixidae were significantly more abundant in lakes without fish than in lakes with fish, and their numbers were not related to the pH of fishless lakes. Anisoptera (Odonata) larvae tended to be more numerous in benthic samples from fishless lakes than from lakes with fish, and their exuviae were significantly more abundant around fishless lakes. In most lakes, the assemblage was dominated by three species; Leucorrhinia glacialis, Libellula julia, and Cordulia shurtleffi. In lakes containing white sucker, Catostomus commersoni, Gomphus spp. were most numerous. In the most acid fishless lakes, L. julia was uncommon, and L. glacialis was extremely abundant. In fishless lakes, numbers of Anisoptera larvae and exuviae were negatively correlated with pH, though species richness was positively correlated with pH. Exuviae of Zygoptera (Odonata) were more abundant around fishless lakes, irrespective of pH. Larvae of Limnephilus (Trichoptera) were most abundant in non-acid fishless lakes, and absent at pH<5.2. Abundances of Banksiola (Trichoptera) were negatively correlated with the pH of fishless lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beamish, R. J. & H. H. Harvey, 1972. Acidification of the La Cloche Mountain Lakes, Ontario and resulting fish mortalities. J. Fish. Res. Bd. Can. 29: 1131–1143.

    Google Scholar 

  • Bell, H. L., 1971. Effect of low pH on the survival and emergence of aquatic insects. Wat. Res. 5: 313–319.

    Article  Google Scholar 

  • Bendell, B. E., 1986. The effects of fish and pH on the distribution and abundance of backswimmers (Hemiptera: Notonectidae). Can. J. Zool. 64: 2696–2699.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1987a. Fish predation, lake acidity and the composition of aquatic insect assemblages. Hydrobiologia 150: 193–202.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1987b. Estimation of nektonic insect populations. Freshwat. Biol. 18: 105–108.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1987c. Cyprinid assemblages, and the physical and chemical characteristics of small northern Ontario lakes. Envir. Biol. Fishes 19: 229–234.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1991. An assessment of leeches (Hirudinea) as indicators of lake acidification. Can. J. Zool. 69: 130–133.

    Google Scholar 

  • Bennett, D. V. & F. A. Streams, 1986. Effects of vegetation on Notonecta (Hemiptera) distribution in ponds with and without fish. Oikos 46: 62–69.

    Google Scholar 

  • Blois-Heulin, C., P. H. Crowley, M. Arrington & D. M. Johnson, 1990. Direct and indirect effects of predators on the dominant invertebrates of two freshwater littoral communities. Oecologia 84: 295–306.

    Google Scholar 

  • Brett, M. T., 1989. The distribution of free-swimming macroinvertebrates in acidic lakes of Maine: the role of fish predation. Aqua Fenn. 19: 113–118.

    Google Scholar 

  • Cook, W. L. & F. A. Streams, 1984. Fish predation on Notonecta (Hemiptera): relationship between prey risk and habitat utilization. Oecologia 64: 177–183.

    Google Scholar 

  • Correa, M., R. Coler, C.-M. Yin & E. Kaufman, 1986. Oxygen consumption and ammonia excretion in the detritivore caddisfly Limnephilus sp. exposed to low pH & aluminium. Hydrobiologia 140: 237–241.

    Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Google Scholar 

  • Dillon, P. J., N. D. Yan & H. H. Harvey, 1984. Acidic deposition: effects on aquatic ecosystems. Crit. Rev. envir. Contr. 13: 167–194.

    Google Scholar 

  • Eriksson, M. O. G., 1984. Acidification of lakes: effects on waterbirds in Sweden. Ambio 13: 260–262.

    Google Scholar 

  • Eriksson, M. O. G., L. Henrikson, B.-I. Nilsson, G. Nyman, H. G. Oscarson, A. E. Stenson, K. Larsson, 1980. Predatorprey relations important for the biotic changes in acidified lakes. Ambio 9: 248–249.

    Google Scholar 

  • Evans, R. A., 1989. Response of limnetic insect populations of two acidic, fishless lakes to liming and brook trout (Salvelinus fontinalis). Can. J. Fish. aquat. Sci. 46: 342–351.

    Google Scholar 

  • Friday, L. E., 1987. The diversity of macroinvertebrate and macrophyte communities in ponds. Freshwat. Biol. 18: 87–104.

    Google Scholar 

  • Haines, T. A. & M. L. Hunter, 1982. Waterfowl and their habitat: threatened by acid rain? Proceedings of the 4th International Waterfowl Symposium, New Orleans, La: 177–188.

  • Havas, M. & T. C. Hutchinson, 1982. Aquatic invertebrates from the Smoking Hills, N.W.T.: effect of pH and metals on mortality. Can. J. Fish. aquat. Sci. 39: 890–903.

    Google Scholar 

  • Henrikson, B.-I., 1988. The absence of antipredator behaviour in the larvae of Leucorrhinia dubia (Odonata) and the comsequence for their distribution. Oikos 51: 179–183.

    Google Scholar 

  • Henrikson, L. & H. G. Oscarson, 1978. Fish predation limiting abundance and distribution of Glaenocorisa p. propinqua. Oikos 31: 102–105.

    Google Scholar 

  • Henrikson, L. & H. G. Oscarson, 1981. Corixids (Hemiptera-Heteroptera), the new top predators in acidified lakes. Verh. int. Ver. Limnol. 21: 1616–1620.

    Google Scholar 

  • Henrikson, L. & H. G. Oscarson, 1985. Waterbugs (Corixidae, Hemiptera-Heteroptera) in acidified lakes: habitat selection and adaptations. Ecol. Bull. 37: 232–238.

    Google Scholar 

  • Hodkinson, I. D., 1975. A community analysis of the benthic insect fauna of an abandoned beaver pond. J. anim. Ecol. 44: 533–551.

    Google Scholar 

  • Jeffries, D. S., 1984. Atmospheric deposition of pollutants in the Sudbury area. In J. O. Nriagu (ed.), Environmental impacts of smelters. John Wiley & Sons, New York: 117–154.

    Google Scholar 

  • Johansson, F., 1991a. Foraging modes in an assemblage of odonate larvae — effects of prey and interference. Hydrobiologia 209: 79–87.

    Google Scholar 

  • Johansson, F., 1991b. Caddis larvae cases (Trichoptera, Limnephilidae) as anti-predatory devices against brown trout and sculpin. Hydrobiologia 211: 185–194.

    Google Scholar 

  • Johnson, D. M. & P. H. Crowley, 1980. Odonate ‘hide and seek’: habitat-specific rules? In W. C. Kerfoot (ed.), The Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, N.H.: 569–579.

    Google Scholar 

  • Johnson, D. M., P. H. Crowley, R. E. Bohanan, C. N. Watson, & T. H. Martin, 1985. Competition among larval dragonflies: a field enclosure experiment. Ecology 66: 119–128.

    Google Scholar 

  • Macan, T. T., 1965. Predation as a factor in the ecology of water bugs. J. anim. Ecol. 34: 691–698.

    Google Scholar 

  • Mackay, R. J. & K. E. Kersey, 1985. A preliminary study of aquatic insect communities and leaf decomposition in acid streams near Dorset, Ontario. Hydrobiologia 122: 3–11.

    Google Scholar 

  • McNicol, D. K., B. E. Bendell & R. K. Ross, 1987a. Studies of the effects of acidification on aquatic wildlife in Canada: waterfowl and trophic relationships in small lakes in northern Ontario. Can. Wildl. Serv. Occas. Pap. No. 62.

  • McNicol, D. K., B. E. Bendell & D. G. McAuley, 1987b. Avian trophic relationships and wetland acidity. Trans. N.A. Wildl. & Nat. Res. Conf. 52: 619–627.

    Google Scholar 

  • McPeek, M. A., 1990a. Determination of species composition in the Enallagma damselfly assemblages of permanent lakes. Ecology 71: 83–98.

    Google Scholar 

  • McPeek, M. A., 1990b. Behavioral differences between Enallagma species (Odonata) influencing differential vulnerability to predators. Ecology 71: 1714–1726.

    Google Scholar 

  • Morin, P. J., 1981. Predatory salamanders reverse the outcome of competition among three species of anuran tadpoles. Science 212: 1284–1286.

    Google Scholar 

  • Morin, P. J., 1984a. The impact of fish exclusion on the abundance and species composition of larval odonates: results of short-term experiments in a North Carolina farm pond. Ecology 65: 53–60.

    Google Scholar 

  • Morin, P. J., 1984b. Odonate guild composition: experiments with colonization history and fish predation. Ecology 65: 1866–1873.

    Google Scholar 

  • Nilsson, B.-I., 1981. Susceptibility of some Odonata larvae to fish predation. Verh. int. Ver. Limnol. 21: 1612–1615.

    Google Scholar 

  • Økland, J., 1983. Factors regulating the distribution of freshwater snails (Gastropoda) in Norway. Malacologia 24: 277–288.

    Google Scholar 

  • Oscarson, H. G., 1987. Habitat segregation in a water boatman (Corixidae) assemblage — the role of predation. Oikos 49: 133–140.

    Google Scholar 

  • Paine, R. T., 1966. Food web complexity and species diversity. Am. Nat. 100: 65–75.

    Article  Google Scholar 

  • Pierce, C. L., P. H. Crowley & D. M. Johnson, 1985. Behaviour and ecological interactions of larval Odonata. Ecology 66: 1504–1512.

    Google Scholar 

  • Pollard, J. B. & M. Berrill, 1992. The distribution of dragonfly nymphs across a pH gradient in south-central Ontario lakes. Can. J. Zool. 70: 878–885.

    Google Scholar 

  • Pritchard, G., 1964. The prey of dragonfly larvae (Odonata; Anisoptera) in ponds in northern Alberta. Can. J. Zool. 42: 785–800.

    Google Scholar 

  • Pritchard, G., 1965. Prey capture by dragonfly larvae (Odonata; Anisoptera). Can. J. Zool. 43: 271–289.

    Google Scholar 

  • Robinson, J. V. & G. A. Wellborn, 1987. Mutual predation in assembled communities of odonate species. Ecology 68: 921–927.

    Google Scholar 

  • Schindler, D. W., 1988. Effects of acid rain on freshwater ecosystems. Science 239: 149–157.

    Google Scholar 

  • Schindler, D. W., S. E. M. Kaslan & R. H. Hesslein, 1989. Biological impoverishment in lakes of the midwestern and northeastern United States from acid rain. Envir. Sci. Technol. 23: 573–580.

    Google Scholar 

  • Sprules, W. G., 1972. Effects of size-selective predation and food competition of high altitude zooplankton communities. Ecology 53: 375–386.

    Google Scholar 

  • Stokes, P. M., 1981. Benthic algal communities in acidic lakes. In R. Singer (ed.), Effects of acidic precipitation on benthos. Proceedings of a Symposium on the Effects of Acid Precipitation on Benthos. North American Benthological Society, Hamilton, N.Y.: 119–138.

    Google Scholar 

  • Sutcliffe, D. W. & T. R. Carrick, 1973. Studies on mountain streams in the English Lake District. Freshwat. Biol. 3: 437–462.

    Google Scholar 

  • Tonn, W. B. & J. J. Magnuson, 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63: 1149–1166.

    Google Scholar 

  • Tonn, W. B. & C. A. Paszkowski, 1986. Size-limited predation, winterkill, and the organization of Umbra-Perca fish assemblages. Can. J. Fish. aquat. Sci. 43: 194–202.

    Google Scholar 

  • van Frankenhuyzen, K. & G. H. Geen, 1986. Microbe-mediated effects of low pH on availability of detrital energy to a shredder, Clistoronia magnifica (Trichoptera: Limnephilidae). Can. J. Zool. 64: 421–426.

    Google Scholar 

  • van Frankenhuyzen, K., G. H. Geen & C. Koivisto, 1985. Direct and indirect effects of low pH on the transformation of detrital energy by the shredding caddisfiy, Clistoronia magnifica (Banks) (Limnephilidae). Can. J. Zool. 63: 2298–2304.

    Google Scholar 

  • Weir, J. S., 1972. Diversity and abundance of aquatic insects reduced by introduction of the fish Clarias gariepinus to pools in Central Africa. Biol. Conser. 4: 169–175.

    Article  Google Scholar 

  • Winterbourn, M. J., 1971a. The life histories and trophic relationships of the Trichoptera of Marion Lake, British Columbia. Can. J. Zool. 49: 623–635.

    Google Scholar 

  • Winterbourn, M. J., 1971b. An ecological study of Banksiola crotchi Banks (Trichoptera, Phryganeidae) in Marion Lake, British Columbia. Can. J. Zool. 49: 637–645.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendell, B.E., McNicol, D.K. Lake acidity, fish predation, and the distribution and abundance of some littoral insects. Hydrobiologia 302, 133–145 (1995). https://doi.org/10.1007/BF00027038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027038

Key words

Navigation