Skip to main content
Log in

An analysis of the Brazilian disk fracture test using the Weibull probabilistic treatment of brittle strength

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

It is pointed out that the Weibull multiaxial treatment of brittle strength contains limitations which are not present in the more familiar uniaxial formulation. Provided these limitations are satisfied, it is possible to use tension or bending data to predict multiaxial behavior when at least one principal stress is tensile. This is illustrated for the Brazilian disk test (diametral compression of a disk). Predictions based on bending tests agree well with observed strength values in disk tests on two types of rocks.

Résumé

Il est démontré que le traitement de la fragilité par la méthode multiaxiale de Weibull est sujet à des restrictions que l'on ne rencontre pas dans la formulation uniaxiale classique. Dans la mesure où ces conditions sont satisfaites, il est possible d'utiliser les données empiriques de traction et de flexion pour prédire un comportement multiaxial quand au moins une des forces principales est une force de traction. A titre d'illustration le test dit “Brazilian Disk Test” est exposé (compression diamétrale d'un disque). Les calculs faits à partir des tests de flexion concordent bien avec les valeurs des résistances observées dans le test du disque, effectué sur deux types de matériaux.

Zusammenfassung

Es wird gezeigt, daß die dreidimensionale Weibull'sche Theorie für spröde Materiale Bedingungen enthält, die die gewöhnlichere eindimensionale Theorie nicht besitzt. Wenn diese Bedingungen erfüllt sind und wenigstens eine der Hauptspannungen eine Zugspannung ist, können die Daten von einfachen Spannungs und Biegungsversuchen verwendet werden um mehrdimensionale Probleme zu berechnen. Dies wird für das “Brazilian Disk Test” (diametralzusammengedrückte Scheibe) demonstriert, Ergebnisse die mit Hilfe von Daten aus Biegeversuchen gewonnen wurden stimmen gut überein mit Festigkeitswerten die an Scheibenversuchen mit zwei verschiedenen Gesteinsarten beobachtet wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Marchall and A. Rudnick, Conventional Strength Testing of Ceramics in Fracture Mechanics of Ceramics, to be published by Plenum Press.

  2. F. L. L. B. Carniero and A. Barcellos, Union of Testing and Research Laboratories for Materials and Structures, No. 13 (1953).

  3. M. C. Shaw, P. M. Braiden and G. J. DeSalvo, ASME Paper No. 73-WA/Prod-17.

  4. M., Mellor and I., Hawkes, Eng. Geol., 5 (1971) 173.

    Article  Google Scholar 

  5. A., Rudnick, A. R., Hunter and F. C., Holden, Mater. Res. Std., 3 (1963) 283.

    Google Scholar 

  6. R., Berenbaum and I., Brodie, Brit. J. Appl. Phys., 10 (1959) 281.

    Google Scholar 

  7. C., Fairhurst, Int. J. Rock Mech. Mining Sci., 1 (1964) 535.

    Google Scholar 

  8. J. A., Hudson, Int. J. Rock Mech. Mining Sci., 6 (1969) 91.

    Article  Google Scholar 

  9. W. Weibull, Ingvetenskakad. Handl., No. 151, Stockholm (1939).

  10. H. L., Oh and I., Finnie, Int. J. Fracture Mech., 6 (1960) 287.

    Google Scholar 

  11. K. P. L., Oh and I., Finnie, Int. J. Fracture Mech., 6 (1970) 333.

    Google Scholar 

  12. O. K. Salmassy, E. G. Bodine, W. H. Duckworth and G. K. Manning, WADC Technical Report 53-50, Part II (1955) 46.

  13. N., Davidenkov, E., Shevandin and F., Witmann, J. Appl. Mech., 14 (1947) 63.

    Google Scholar 

  14. S. S. Manson, Thermal Stress and Low-Cycle Fatigue, McGraw-Hill Book Co. (1966) 295.

  15. L. J., Broutman and R. H., Cornish, J. Am. Ceramic Soc., 48 (1965) 519.

    Google Scholar 

  16. R. E. Ely, U. S. Army Missile Comm. Report, No. RR-TR-70-23 (1970).

  17. E. K., Priddle, J. Strain Analysis, 4 (1968) 81.

    Google Scholar 

  18. W. M. Mair, Gr. Britain, Nat. Eng. Lab. Report No. 261 (1966).

  19. K. P. L., Oh, Ö., Vardar and I., Finnie, Int. J. of Fracture, 9 (1973) 372.

    Google Scholar 

  20. H. W., Babel and G., Sines, J. Basic Engineering, 90 (1968) 285.

    Google Scholar 

  21. O. K. Salmassy, E. G. Bodine, W. H. Duckworth and G. K. Manning, WADC Technical Report 53-50, Part II (1955) 53.

  22. W. H. Dukes, Handbook of Brittle Material Design Technology, AGARDograph 152, North Atlantic Treaty Organization (1971).

  23. S. B. Batdorf and J. G. Crose, to be published in Trans. ASME, J. App. Mechanics.

  24. G., Hondros, Australian Journal of Applied Science, 10 (1959) 267.

    Google Scholar 

  25. N. A. Weil and I. M. Daniel, The Influence of Stress Gradient on the Strength of Brittle Materials, ASME Paper 63-WA-228.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardar, Ö., Finnie, I. An analysis of the Brazilian disk fracture test using the Weibull probabilistic treatment of brittle strength. Int J Fract 11, 495–508 (1975). https://doi.org/10.1007/BF00033536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033536

Keywords

Navigation