Skip to main content
Log in

Annual dynamics and production of rotifers in an eutrophication gradient in the Baltic Sea

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Spatial and temporal fluctuations in rotifer abundance have been monitored along a trophic gradient in the northern Baltic. The most common rotifer was Synchaeta spp., which had one abundance peak in June and one in September–October. Only during the latter period was the abundance significantly higher in the eutrophic basin compared to the reference area. The annual production of Synchaeta spp. was about double in the eutrophic basin. A positive correlation between Synchaeta spp. biomass and phytoplankton biomass was obtained during the autumn, but not during the early summer peak, although the phytoplankton community was dominated by the same species. Keratella quadrata, K. cochlearis and K. cruciformis were most abundant in August–September, and all three species had increased abundance in the eutrophic basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackefors, H., 1972. The amount of zooplankton expressed as numbers, wet weight and carbon content in the Askö area. Medd. Havsfiskelab., Lysekil, 129 pp. (mimeogr.).

  • Dumont, H., 1977. Biotic factors in the population dynamics of rotifers. Arch. Hydrobiol. Beih. 8: 98–122.

    Google Scholar 

  • Dybern, B. L, Ackefors, H. & Elmgren, R., 1976. Recommendation on methods for marine biological studies in the Baltic Sea. Baltic mar. Biol. 1, 98 pp.

  • Fuller, D. R., Stemberger, R. S. & Gannon, J. E., 1977. Limnetic rotifers as indicators of trophic change. J. Elisha Mitchell Sci. Soc. 93: 104–113.

    Google Scholar 

  • Gannon, J. E. & Stemberger, R. S., 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. am. microsc. Soc. 97: 16–35.

    Google Scholar 

  • Gliwicz, Z. M., 1969. The share of algae, bacteria and trypton in the food of the pelagic zooplankton of lakes with various trophic characteristics. Bull. Acad. Sci. 3: 159–165.

    Google Scholar 

  • Gliwicz, Z. M. & Hillbricht-Ilkowska, A., 1972. Efficiency of the ultization of nannoplankton primary production by communities of filter feeding animals measured in situ. Verh. int. Ver. Limnol. 18: 197–203.

    Google Scholar 

  • Hernroth, L. & Viljamaa, H., 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. Baltic mar. Biol. 6, 15 pp.

  • Hillbricht-Ilkowska, A., Spodniewska, I. & Weglénska, T., 1979. Changes in the phytoplankton-zooplankton relationship connected with the eutrophication of lakes. Symp. Biol. Hung. 19: 59–75.

    Google Scholar 

  • Hobro, R., 1979. Annual phytoplankton succession in a coastal area in the northern Baltic. In Naylor, E. & Hartnoll, R. G. (Eds.), Cyclic phenomena in marine plants and animals. Pergamon Press, Oxford, N.Y. pp. 3–10.

    Google Scholar 

  • Hofmann, W., 1977. The influence of abiotic environmental factors on population dynamics in planktonic rotifers. Arch. Hydrobiol. Beih. 8: 77–83.

    Google Scholar 

  • Kankaala, P. & Wulff, F., 1981. Experimental studies on temperature dependent embryonic and postembryonic developmental rates of Bosmina longispina maritima (Cladocera) in the Baltic. Oikos 36: 137–146.

    Google Scholar 

  • Kott, P., 1953. Modified whirling apparatus for the subsampling of plankton. Austr. J. mar. freshwat. Res. 4: 387–393.

    Google Scholar 

  • Larsson, U. & Hagstrom, Å., 1982. Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70.

    Google Scholar 

  • Lehmann, E. L., 1975. Nonparametrics, statistical methods based on ranks. Holden-Day, Inc., San Francisco, McGrawHill Internat. Book Co., New York. 457 pp.

    Google Scholar 

  • Melvasalo, T. & Viljamaa, H., 1975. Plankton composition in the Helsinki area. Merentutkimuslait Julk./ Havsforskningsinst. 239: 301–310.

    Google Scholar 

  • Mullin, M. M. 1969. Production of zooplankton in the ocean: the present status and problems. Oceanogr. mar. Biol. Rev. 7: 293–314.

    Google Scholar 

  • Naumann, E., 1923. Specielle Untersuchungen fiber die Ernäh-rungsbiologie and die natüurliche Nahrung der Copopoden and der Rotiferan des Limnoplanktons. Lunds Univ. Arsskrift N.F. 2, 19: 1–17.

    Google Scholar 

  • Nauwerck, A., 1963. Die Beziehungen zwischen Zooplankton and Phytoplankton im See Erken. Symb. bot. Ups. 17: 1–163.

    Google Scholar 

  • Pourriot, R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beih. 8: 243–260.

    Google Scholar 

  • Radwan, S., 1980. The effect of some biotic and abiotic factors on the fertility of planktonic rotifers species. Hydrobiologia 73: 59–62.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1981. Biometry. The principles and practice of statistics in biological research. 2nd ed., W. H. Freeman & Co., San Francisco. 859 pp.

    Google Scholar 

  • Stemberger, R. S., 1981. A general approach to the culture of planktonic rotifers. Can. J. Fish. aquat. Sci. 38: 721–724.

    Google Scholar 

  • Stemberger, R. S. & Gannon, J. E., 1977. Multivariate analysis of rotifer distributions in lake Huron. Arch. Hydrobiol. Beih. 8: 38–42.

    Google Scholar 

  • UNESCO, 1968. Zooplankton sampling. Monogr. oceanogr. Methodology. 174 pp.

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitt. int. Ber. Limnol. 9: 1–38.

    Google Scholar 

  • Winberg, G. G., 1971. Methods for the estimation of production of aquatic animals. Academic Press, London, New York. 175 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, S. Annual dynamics and production of rotifers in an eutrophication gradient in the Baltic Sea. Hydrobiologia 104, 335–340 (1983). https://doi.org/10.1007/BF00045987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045987

Keywords

Navigation