Skip to main content
Log in

The distal hindlimb musculature of the cat: interanimal variability of locomotor activity and cutaneous reflexes

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

During stereotyped behaviors such as locomotion, patterns of muscle recruitment are usually quite consistent from animal to animal, even in the face of many surgical and pharmacological reductions. However, as studies of musculoskeletal structure, neuromuscular architecture, and sensorimotor circuitry become more detailed, it is important to ask whether there is some level of organization at which individual differences begin to dominate. This study concentrated on the small muscles of the foot and ankle, using standardized methods that consistently record stereotypical electromyographic activity from prime mover muscles and that permit wellcalibrated stimulation of cutaneous nerves to elicit reflexes during treadmill locomotion. Some muscles (particularly the main ankle extensors, triceps surae, and plantaris) had stereotyped activity during both unperturbed locomotion and reflex responses. Others had stereotyped activity during locomotion but variable reflex patterns among animals (tibialis anterior, extensor digitorum longus, flexor hallucis longus, and peroneus brevis). Still others had variable locomotor activity but reflexes that were consistent (flexor digitorum longus) or variable for only peroneal nerve stimulation (peroneus longus), only plantar nerve stimulation (peroneus tertius), or the two (flexor digitorum brevis). Among muscles with interanimal variability, there seemed to be no particular correlation between locomotor and reflexive recruitment in a given animal. This functional heterogeneity is discussed in terms of the development of locomotor and reflex programs and in the context of structural heterogeneity of some of these muscles that is described in the companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham LD, Loeb GE (1985) The distal hindlimb musculature of the cat. Patterns of normal use. Exp Brain Res 58:580–593

    Article  Google Scholar 

  • Abraham LD, Marks WB, Loeb GE (1985) The distal hindlimb musculature of the cat. Cutaneous reflexes during locomotion. Exp Brain Res 58:594–603

    Article  CAS  PubMed  Google Scholar 

  • Bak MJ, Loeb GE (1979) A pulsed integrator for EMG analysis. Electroencephalogr Clin Neurophysiol 47:738–741

    Article  CAS  PubMed  Google Scholar 

  • Blaszczyk JW, Loeb GE (1993) Why cats pace on the treadmill. Physiol Behav 53:501–507

    Article  CAS  PubMed  Google Scholar 

  • Burgess PR, Petit D, Warren RM (1968) Receptor types in cat hairy skin supplied by myelinated fibers. J Neurophysiol 31:833–848

    CAS  PubMed  Google Scholar 

  • Burke RE, Fleshman JW (1986) Strategies to identify interneurons involved in locomotor pattern generation in the mammalian spinal cord. In: Grillner S, Stein PSG, Stuart DG (eds) Neurobiology of vertebrate locomotion. Macmillan, London, pp 245–268

    Google Scholar 

  • Cavanagh PR, Lafortune M (1980) Ground reaction forces in distance running. J Biomech 13:397–406

    Article  CAS  PubMed  Google Scholar 

  • Chanaud CM, Pratt CA, Loeb GE (1991) Functionally complex muscles of the cat hindlimb. V. The roles of histochemical fibertype regionalization and mechanical heterogeneity in differenttial muscle activation. Exp Brain Res 85:300–313

    Article  CAS  PubMed  Google Scholar 

  • Chow CK, Jacobson DH (1971) Studies of human locomotion via optimal programming. Math Biosci 10:239–306

    Article  Google Scholar 

  • Cole KJ, Abbs JH (1987) Kinematic and electromyographic responses to perturbation of a rapid grasp. J Neurophysiol 57:1498–1510

    CAS  PubMed  Google Scholar 

  • Coss L, Chan AK, Goslow GE, Rasmussen S (1978) Ipsilateral limb variation in cats during overground locomotion. Brain Behav Evol 15:85–93

    Article  CAS  PubMed  Google Scholar 

  • Davy DT, Audu ML (1987) A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J Biomech 20:187–201

    Article  CAS  PubMed  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210:492–498

    Article  CAS  PubMed  Google Scholar 

  • Duenas SH, Loeb GE, Marks WB (1984) A quantitative comparison of hindlimb muscle activity and flexor reflexes in normal and decerebrate cats during walking. Soc Neurosci Abstr 10:628

    Google Scholar 

  • Duysens J, Loeb GE (1980) Modulation of ipsi- and contralateral reflex responses in unrestrained walking cats. J Neurophysiol 44:1024–1037

    CAS  PubMed  Google Scholar 

  • Duysens J, Stein RB (1978) Reflexes induced by nerve stimulation in walking cats with implanted electrodes. Exp Brain Res 32:213–224

    Article  CAS  PubMed  Google Scholar 

  • Eccles RM, Lundberg A (1959a) Supraspinal control of interneurones mediating spinal reflexes. J Physiol (Lond) 147:565–584

    CAS  Google Scholar 

  • Eccles RM, Lundberg A (1959b) Synaptic actions in motoneurons by afferents which may evoke the flexion reflex. Arch Ital Biol 97:199–221

    Google Scholar 

  • Engberg I (1964) Reflexes to foot muscles in the cat. Acta Physiol Scand 62 (Suppl 235):46–64

    Google Scholar 

  • Fleshman JW, Lev-Tov A, Burke RE (1984) Peripheral and central control of flexor digitorum longus and flexor hallicus longus motoneurons: the synaptic basis of functional diversity. Exp Brain Res 54:133–149

    Article  CAS  PubMed  Google Scholar 

  • Fleshman JW, Rudomin P, Burke RE (1988) Supraspinal control of a short-latency cutaneous pathway to hindlimb motoneurons. Exp Brain Res 69:449–459

    Article  CAS  PubMed  Google Scholar 

  • Forssberg H, Svartengren G (1983) Hardwired locomotor network in cat revealed by a retained motor pattern to gastrocnemius after muscle transposition. Neurosci Lett 41:283–288

    Article  CAS  PubMed  Google Scholar 

  • Forssberg H, Grillner S, Rossignol S (1975) Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res 85:103–107

    Article  CAS  PubMed  Google Scholar 

  • Forssberg H, Grillner S, Rossignol S (1977) Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res 132:121–139

    Article  CAS  PubMed  Google Scholar 

  • Gracco VL, Abbs JH (1985) Dynamic control of the perioral system during speech: kinematic analyses of autogenic and nonautogenic sensorimotor processes. J Neurophysiol 54:418–432

    CAS  PubMed  Google Scholar 

  • Graham Brown T (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond [Biol] 84:308–319

    Article  Google Scholar 

  • Grillner S, Zangger P (1975) How detailed is the central pattern generation for locomotion? Brain Res 88:367–371

    Article  CAS  PubMed  Google Scholar 

  • Halbertsma J (1983) The stride cycle of the cat: the modeling of locomotion by computerized analysis of automatic recordings. Acta Physiol Scand [Suppl] 521:1–75

    CAS  Google Scholar 

  • Hoffer JA, Loeb GE, Pratt CA (1981) Unitary axonal conduction velocity from averaged nerve cuff electrodes in cats. J Neurosci Methods 4:211–225

    Article  CAS  PubMed  Google Scholar 

  • Hoffer JA, Loeb GE, Marks WB, O'Donovan MJ, Pratt CA, Sugano N (1987) Cat hindlimb motoneurons during locomotion. I. Destination, axonal conduction velocity and recruitment threshold. J Neurophysiol 57:510–529

    CAS  PubMed  Google Scholar 

  • Hogan N (1984) Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans Autom Control 29:681–690

    Article  Google Scholar 

  • Kanda K, Burke RE, Walmsley B (1977) Differential control of fast and slow twitch motor units in the decerebrate cat. Exp Brain Res 29:57–74

    Article  CAS  PubMed  Google Scholar 

  • Kernell D, Hultborn H (1990) Synaptic effects on recruitment gain: a mechanism of importance for the input-output relations of motoneurone pools? Brain Res 507:176–170

    Article  CAS  PubMed  Google Scholar 

  • LaBella LA, Kehler JP, McCrea DA (1989) A differential synaptic input to the motor nuclei of triceps surae from the caudal and lateral cutaneous sural nerves. J Neurophysiol 61:291–301

    CAS  PubMed  Google Scholar 

  • Leffert RP (1976) Patterns of neuromuscular activity following tendon transfer in the upper limb: a preliminary study. J Hand Surg 1:181–189

    Article  CAS  Google Scholar 

  • Lockard DL, Traher LM, Wetzel MC (1976) Reinforcement influences upon topography of treadmill locomotion by cats. Physiol Behav 16:141–146

    Article  CAS  PubMed  Google Scholar 

  • Loeb GE (1987) Cutaneous reflexes in the cat distal hindlimb and their gating during normal, treadmill walking. Soc Neurosci Abstr 13:1177

    Google Scholar 

  • Loeb GE, Gans C (1986) Electromyography for experimentalists. University of Chicago Press, Chicago

    Google Scholar 

  • Loeb GE, Levine WS, He J (1990) Understanding sensorimotor feedback through optimal control. Cold Spring Harb Symp Quant Biol 55:791–803

    Article  CAS  PubMed  Google Scholar 

  • Loeb GE, Walmsley B, Duysens J (1980) Obtaining proprioceptive information from natural limbs: implantable transducers vs. somatosensory neuron recordings. In: Neuman MR (eds) Physical sensors for biomedical applications. (Proceedings of workshop on solid state physical sensors for biomedical application) CRC, Boca Raton, pp 135–149

    Google Scholar 

  • Lundberg A (1975) Control of spinal mechanisms from the brain. In: Brady RO (eds) The nervous system, vol 1. Basic neuroscience. Raven, New York, pp 253–265

    Google Scholar 

  • Lundberg A (1980) Half-centres revisited. Adv Physiol Sci 1:155–167

    Google Scholar 

  • McMahon SB, Wall PD (1989) Changes in spinal cord reflexes after cross-anastomosis of cutaneous and muscle nerves in the adult rat. Nature 342:272–274

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Grajski K (1990) Cortical network changes underlying representational plasticity. Cold Spring Harb Symp Quant Biol 55:873–887

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D (1983) Topographic reorganization of somato-sensory cortical areas 3B and 1 in adult monkeys following restricted deafferentation. Neuroscience 8:33–55

    Article  CAS  PubMed  Google Scholar 

  • Miller S, Van der Burg J, Van der Meche FGA (1975) Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res 91:217–237

    Article  CAS  PubMed  Google Scholar 

  • Moschovakis AK, Sholomenko GN, Burke RE (1991) Differential control of short latency cutaneous excitation in cat FDL motoneurons during fictive locomotion. Exp Brain Res 83:489–501

    Article  CAS  PubMed  Google Scholar 

  • O'Donovan MJ, Pinter MJ, Dum RP, Burke RE (1982) Actions of FDL and FHL muscles in intact cats: functional dissociation between anatomical synergists. J Neurophysiol 47:1126–1143

    PubMed  Google Scholar 

  • Oguztoreli MN, Stein RB (1990) Optimal task performance of antagonistic muscles. Biol Cybern 64:87–94

    Article  CAS  PubMed  Google Scholar 

  • Orlovsky GN, Shik ML (1976) Control of locomotion: a neurophysiological analysis of the cat locomotor system. Int Rev Physiol Neurophysiol 10:281–317

    Google Scholar 

  • Pandy MG, Zajac FE, Sim E, Levine WS (1990) An optimal control model for maximum-height human jumping. J Biomech 23:1185–1198

    Article  CAS  PubMed  Google Scholar 

  • Phillipson M (1905) L'autonomie et la centralisation dans le systeme nerveux des animaux. Trav Lab Physiol Inst Solvay (Bruxelles) 7:1–208

    Google Scholar 

  • Pratt CA, Chanaud CM, Loeb GE (1991) Functionally complex muscles of the cat hindlimb. IV. Intramuscular distribution of movement command signals and cutaneous reflexes in broad, bifunctional thigh muscles. Exp Brain Res 85:281–299

    Article  CAS  PubMed  Google Scholar 

  • Rindos AJ, Loeb GE, Levitan H (1984) Conduction velocity changes along lumbar primary afferent fibers in cats. Exp Neurol 86:208–226

    Article  CAS  PubMed  Google Scholar 

  • Schmidt BJ, Meyers DER, Fleshman JW, Tokuriki M, Burke RE (1988) Phasic modulation of short latency cutaneous excitation in flexor digitorum longus motoneurons during fictive locomotion. Exp Brain Res 71:568–578

    Article  CAS  PubMed  Google Scholar 

  • Schmidt BJ, Meyers DER, Tokuriki M, Burke R (1989) Modulation of short latency cutaneous excitation in flexor and extensor motoneurons during fictive locomotion in the cat. Exp Brain Res 77:57–68

    Article  CAS  PubMed  Google Scholar 

  • Schomburg ED (1990) Spinal sensorimotor systems and their supraspinal control. Neurosci Res 7:265–340

    Article  CAS  PubMed  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extensionreflex and reflex stepping and standing. J Physiol (Lond) 40:28–121

    CAS  Google Scholar 

  • Sperry RW (1942) Transplantation of motor nerves and muscles in the forelimb of the rat. Neurology 76:283–321

    Google Scholar 

  • Sperry RW (1945) The problem of central nervous reorganization after nerve regeneration and muscle transposition. Q Rev Biol 20:311–369

    Article  CAS  PubMed  Google Scholar 

  • Sperry RW (1947) Effect of crossing nerves to antagonistic limb muscles in the monkey. Arch Neurol Psychiatry 58:452–473

    Article  CAS  PubMed  Google Scholar 

  • Stein RB, Nichols TR, Jhamandas J, Davis L, Charles D (1977) Stable long-term recordings from cat peripheral nerves. Brain Res 128:21–38

    Article  CAS  PubMed  Google Scholar 

  • Vilensky JA, Patrick MC (1984) Inter and intratrial variation in cat locomotion behavior. Physiol Behav 33:733–746

    Article  CAS  PubMed  Google Scholar 

  • Wetzel MC, Atwater AE, Wait JV, Stuart DG (1975) Neural implications of different profiles between treadmill and overground locomotion timing in cats. J Neurophysiol 38:492–501

    CAS  PubMed  Google Scholar 

  • Wolpaw JR, Lee CE (1989) Memory traces in primate spinal cord produced by operant conditioning of H-reflex. J Neurophysiol 61:563–572

    CAS  PubMed  Google Scholar 

  • Young RP, Scott SH, Loeb GE (1992) An intrinsic mechanism to stablize posturejoint-angle-dependent moment arms of feline ankle muscles. Neurosci Lett 145:137–140

    Article  CAS  PubMed  Google Scholar 

  • Young RP, Scott SH, Loeb GE (1993) The distal hindlimb muscularture of the cat: multiaxis moment arms at the ankle joint. Exp Brain Res 96:141–151

    CAS  PubMed  Google Scholar 

  • Yumiya H, Larsen KD, Asanuma H (1979) Motor readjustment and input-output relationship of motor cortex following crossconnection of forearm muscles in cats. Brain Res 177:566–570

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeb, G.E. The distal hindlimb musculature of the cat: interanimal variability of locomotor activity and cutaneous reflexes. Exp Brain Res 96, 125–140 (1993). https://doi.org/10.1007/BF00230446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230446

Key words

Navigation