Skip to main content
Log in

Cable theory in neurons with active, linearized membranes

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This investigation aims at exploring some of the functional consequences of single neurons containing active, voltage dependent channels for information processing. Assuming that the voltage change in the dendritic tree of these neurons does not exceed a few millivolts, it is possible to linearize the non-linear channel conductance. The membrane can then be described in terms of resistances, capacitances and inductances, as for instance in the small-signal analysis of the squid giant axon. Depending on the channel kinetics and the associated ionic battery the linearization yields two basic types of membrane: a membrane modeled by a collection of resistances and capacitances and membranes containing in addition to these components inductances. Under certain specified conditions the latter type of membrane gives rise to a membrane impedance that displays a prominent maximum at some nonzero resonant frequency f max. We call this type of membrane quasi-active, setting it apart from the usual passive membrane. We study the linearized behaviour of active channels giving rise to quasi-active membranes in extended neuronal structures and consider several instances where such membranes may subserve neuronal function: 1. The resonant frequency of a quasi-active membrane increases with increasing density of active channels. This might be one of the biophysical mechanisms generating the large range over which hair cells in the vertebrate cochlea display frequency tuning. 2. The voltage recorded from a cable with a quasi-active membrane can be proportional to the temporal derivative of the injected current. 3. We modeled a highly branched dendritic tree (δ-ganglion cell of the cat retina) using a quasi-active membrane. The voltage attenuation from a given synaptic site to the soma decreases with increasing frequency up to the resonant frequency, in sharp contrast to the behaviour of passive membranes. This might be the underlying biophysical mechanism of receptive fields whose dimensions are large for rapid signals but contract to a smaller area for slow signals as suggested by Detwiler et al. (1978).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P.R., Constanti, A., Brown, D.A., Clark, R.B.: Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature 296, 746–749 (1982)

    Google Scholar 

  • Ashmore, J.: Listening with one cell. Nature 304, 489–490 (1983)

    Google Scholar 

  • Barrett, E.F., Barrett, J.N., Crill, W.E.: Voltage-sensitive outward currents in cat motoneurones. J. Physiol. 304, 251–276 (1980)

    Google Scholar 

  • Boycott, B.B., Wässle, H.: The morphological types of ganglion cells of the domestic cat's retina. J. Physiol. 240, 397–419 (1974)

    Google Scholar 

  • Brown, D.A., Adams, P.R.: Muscarinic suppression of a novel voltage-sensitive K+-current in a vertebrate neurone. Nature 283, 673–675 (1980)

    Google Scholar 

  • Brown, T.H., Perkel, D.H., Norris, J.C., Peacock, J.H.: Electrotonic structure and specific membrane properties of mouse dorsal root ganglion neurons. J. Neurophysiol. 45, 1–15 (1981)

    Google Scholar 

  • Brühl, G., Jansen, W., Vogt, H.-J.: Nachrichtenübertragungstechnik. Stuttgart: Kohlhammer Verlag 1979

    Google Scholar 

  • Buxton, B.F., Buxton, H.: Monocular depth perception from optical flow by space time signal processing. Proc. R. Soc. London B218, 27–47 (1983)

    Google Scholar 

  • Chandler, W.K., Fitzhugh, R., Cole, K.S.: Theoretical stability properties of a space-clamped axon. Biophys. J. 2, 105–127 (1962)

    Google Scholar 

  • Clapham, D.E., DeFelice, L.J.: The theoretical small signal impedance of the frog node, Rana pipiens. Pflügers Arch. 366, 273–276 (1976)

    Google Scholar 

  • Clapham, D.E., DeFelice, L.J.: Small signal impedance of heart cell membranes. J. Membrane Biol. 67, 63–71 (1982)

    Google Scholar 

  • Cole, K.S.: Rectification and inductance in the squid giant axon. J. Physiol. 25, 2951 (1941)

    Google Scholar 

  • Cole, K.S., Baker, R.F.: Longitudinal impedance of the squid giant axon. J. Gen. Physiol. 24, 771–788 (1941)

    Google Scholar 

  • Connors, B.W., Gutnick, M.J., Prince, D.A.: Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48, 1302–1420 (1982)

    Google Scholar 

  • Cooley, J.W., Dodge, F.A., Jr.: Digital computer solutions for excitation and propagation of the nerve impulse. Biophys. J. 6, 583–599 (1966)

    Google Scholar 

  • Crawford, A.C., Fettiplace, R.: The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J. Physiol. 306, 79–125 (1980)

    Google Scholar 

  • Crawford, A.C., Fettiplace, R.: An electrical tuning mechanism in turtle cochlear hair cells. J. Physiol. 312, 377–412 (1981)

    Google Scholar 

  • Crill, W.E., Schwindt, P.C.: Active currents in mammalian central neurons. Trends Neurosci. 6, 236–240 (1983)

    Google Scholar 

  • DeHaan, R.L., DeFelice, L.J.: Oscillatory properties and excitability of the heart cell membrane. In: Theoretical chemistry, periodicities in chemistry and biology. pp. 181–233. Eyring, H., Henderson, D. (eds.) New York: Academic Press 1978

    Google Scholar 

  • Derrington, A.M., Lennie, P.: The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat. J. Physiol. 33, 343–366 (1982)

    Google Scholar 

  • Detwiler, P.B., Hodgkin, A.L., McNaughton, P.A.: A surprising property of electrical spread in the network of rods in the turtle's retina. Nature 274, 562–565 (1978)

    Google Scholar 

  • Detwiler, P.B., Hodgkin, A.L., McNaughton, P.A.: Temporal and spatial characteristics of the voltage response of rods in the retina of the snapping turtle. J. Physiol. 300, 213–250 (1980)

    Google Scholar 

  • Eisenberg, R.S., Johnson, E.A.: Three-dimensional electrical field problems in physiology. Prog. Biophys. Mol. Biol. 20, 1–65 (1970)

    Google Scholar 

  • Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187, 517–552 (1966)

    Google Scholar 

  • Enroth-Cugell, C., Robson, J.G., Schweitzer-Tong, D.E., Watson, A.B.: Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. J. Physiol. 341, 279–307 (1983)

    Google Scholar 

  • Gustafsson, B., Galvan, M., Grafe, P., Wigström, H.: A transient outward current in a mammalian central neurone blocked by 4-aminopyridine. Nature 299, 252–254 (1982)

    Google Scholar 

  • Halliwell, J.V., Adams, P.R.: Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res. 250, 71–92 (1982)

    Google Scholar 

  • Hengstenberg, R.: Spike responses of “non-spiking” visual interneurone. Nature 270, 338–340 (1977)

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  • Holden, A.V., Yoda, M.: The effect of ionic channel density on neuronal function. J. Theor. Neurophysiol. 1, 60–81 (1981)

    Google Scholar 

  • Hopkins, C.D.: Stimulus filtering and electroreception: Tuberous electroreceptors in three species of gymnotoid fish. J. Comp. Physiol. 111, 171–207 (1976)

    Google Scholar 

  • Johnston, D., Lam, D.M.-K.: Regenerative and passive membrane properties of isolated horizontal cells from a teleost retina. Nature 292, 451–453 (1981)

    Google Scholar 

  • Koch, C.: Nonlinear information processing in dendritic trees of arbitrary geometries. Ph. D. Thesis, University of Tübingen (1982)

  • Koch, C., Poggio, T.: A theoretical analysis of electrical properties of spines. Proc. Roy. Soc. London B218, 455–477 (1983a)

    Google Scholar 

  • Koch, C., Poggio, T.: A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry. Submitted (1983b)

  • Koch, C., Poggio, T.: Velocity: its meaning and application to one-dimensional cables (in preparation) (1984)

  • Koch, C., Poggio, T., Torre, V.: Retinal ganglion cells: A functional interpretation of dendritic morphology. Phil. Trans. R. Soc. London B298, 227–264 (1982)

    Google Scholar 

  • Koch, C., Poggio, T., Torre, V.: Nonlinear interaction in a dendritic tree: localization, timing and role in information processing. Proc. Natl. Acad. Sci. USA 80, 2799–2802 (1983)

    Google Scholar 

  • Korn, G.A., Korn, T.M.: Mathematical handbook for scientists and engineers. New York: McGraw-Hill 1961

    Google Scholar 

  • Lewis, R.S., Hudspeth, A.J.: Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature 304, 538–541 (1983)

    Google Scholar 

  • Llinas, R., Jahnsen, H.: Electrophysiology of mammalian thalamic neurones in vitro. Nature 297, 406–408 (1982)

    Google Scholar 

  • Llinas, R., Sugimori, M.: Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. 305, 197–213 (1980)

    Google Scholar 

  • Llinas, R., Yarom, Y.: Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J. Physiol. 315, 569–584 (1981)

    Google Scholar 

  • Marchiafava, P.L.: The responses of retinal ganglion cells to stationary and moving visual stimuli. Vision Res. 19, 1203–1211 (1979)

    Google Scholar 

  • Mauro, A., Conti, F., Dodge, F., Schor, R.: Subthreshold behavior and phenomenological impedance of the squid giant axon. J. Gen. Physiol. 55, 497–523 (1970)

    Google Scholar 

  • Meyer, J.H., Zakon, H.H.: Androgens alter the tuning of electroreceptors. Science 217, 635–637 (1982)

    Google Scholar 

  • Mirolli, M.: Fast inward and outward current channels in a nonspiking neurone. Nature 292, 251–253 (1981)

    Google Scholar 

  • Moore, L.E., Tsai, T.D.: Ion conductances of the surface and transverse tubular membranes of skeletal muscle. J. Membrane Biol. 73, 217–226 (1983)

    Google Scholar 

  • Poggio, T., Torre, V.: A theory of synaptic interactions. In: Theoretical approaches to neurobiology, pp. 28–38. Reichardt, W.E., Poggio, T. (eds.). Cambridge, NJ: MIT Press 1981

    Google Scholar 

  • Rall, W.: Core conductor theory and cable properties of neurons. In: Handbook of physiology, pp. 39–97. Kandel, E., Geiger, S. (eds.). Washington, DC: American Physiological Society 1977

    Google Scholar 

  • Reichardt, W.: Autocorrelation: a principle for the evaluation of sensory information by the central nervous system. In: Sensory communication, pp. 303–318. Rosenblith, W.A. (ed.). Cambridge, NJ: MIT Press 1961

    Google Scholar 

  • Richter, J., Ullman, S.: A model for the temporal organization of X- and Y-type receptive fields in the primate retina. Biol. Cybern. 43, 127–145 (1982)

    Google Scholar 

  • Rinzel, J.: Integration and propagation of neuroelectric signals. In: Studies in mathematical biology, pp. 1–66. Levin, S.A. (ed.). Math. Assoc. America (1978)

  • Roberts, A., Bush, B.M.H.: Neurones without impulses: their significance for vertebrate and invertebrate nervous systems. Cambridge, NJ: Cambridge University Press 1981

    Google Scholar 

  • Sabah, N.H., Leibovic, K.N.: Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon. Biophys. J. 9, 1206–1222 (1969)

    Google Scholar 

  • Sabah, N.H., Leibovic, K.N.: The effect of membrane parameters on the properties of the nerve impulse. Biophys. J. 12, 1132–1144 (1972)

    Google Scholar 

  • Sabah, N.H., Spangler, R.A.: Repetitive response of the Hodgkin-Huxley model for the squid giant axon. J. Theor. Biol. 29, 155–171 (1970)

    Google Scholar 

  • Schmitt, F.O., Dev, P., Smith, B.H.: Electrotonic processing of information by brain cells. Science 193, 114–120 (1976)

    Google Scholar 

  • Schwartzkroin, P.A., Slawsky, M.: Probable calcium spikes in hippocampal neurons. Brain Res. 135, 157–161 (1977)

    Google Scholar 

  • Scott, A.C.: Effect of the series inductance of a nerve axon upon its conduction velocity. Math. Biosci. 11, 277–290 (1971)

    Google Scholar 

  • Sirovich, L., Knight, B.W.: On subthreshold solutions of the Hodgkin-Huxley equations. Proc. Natl. Acad. Sci. USA 74, 5199–5202 (1977)

    Google Scholar 

  • Smith, K.J., Schauf, C.L.: Size-dependent variation of nodal properties in myelinated nerve. Nature 293, 297–299 (1981)

    Google Scholar 

  • Swindale, N.V.: Anatomical logic of retinal nerve cells. Nature 303, 570–571 (1983)

    Google Scholar 

  • Torre, V., Owen, W.G.: High-pass filtering of small signals by the rod network in the retina of the toad, Bufo Marinus. Biophys. J. 41, 305–324 (1983)

    Google Scholar 

  • Torre, V., Owen, W.G., Sandini, G.: The dynamics of electrically interacting cells. IEEE Trans. Syst. Man, Cybern. (in press)

  • Torre, V., Poggio, T.: A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. London B202, 409–416 (1978)

    Google Scholar 

  • Wong, R.K.S., Prince, D.A., Basbaum, A.I.: Intradendritic recordings from hippocampal neurons. Proc. Natl. Acad. Sci. USA 76, 986–990 (1979)

    Google Scholar 

  • Wyatt, H.J., Daw, N.W.: Directionally sensitive ganglion cells in the rabbit: specificity for stimulus direction, size and speed. J. Neurophysiol. 38, 613–626 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, C. Cable theory in neurons with active, linearized membranes. Biol. Cybern. 50, 15–33 (1984). https://doi.org/10.1007/BF00317936

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317936

Keywords

Navigation