Skip to main content
Log in

Migration of moth species in a network of small islands

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Rapidly increasing fragmentation of natural landscapes decreases the ability of many species to reach the smaller and more isolated patches of habitat in a metapopulation. The densities of local populations of several moth species and the butterfly Hipparchia semele in a network of small islands, and the rates of inter-island movement and movement patterns, were investigated, to determine the factors affecting the rate and pattern of movements. The estimated population densities ranged from 0.001 to 0.2 individuals/m2. The observed emigration and immigration rates depended on island isolation and various traits of the species, with great variability in migration rates among species. Thin-bodied, slow-flying species did not move among the islands, whereas many robust, fast-flying species moved among the islands relatively frequently. Migration rate increased significantly with body size and was significantly higher in oligophagous than in polyphagous species, suggesting that these factors are important determinants of the migration rate of the species. Migration rate was low when the surface temperature of the sea was low, and a greater proportion of individuals emigrated from small than large patches of habitat. The migration distances of female noctuids were shorter than those of males and those of both sexes of the butterfly H. semele. The observed movement patterns are consistent with a metapopulation structure in most of the moth species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrus A, Csóka G (1992) Studien über das Schwärmen und die Dichte-Abschätzung des Frostspanners, Operophtera brumata L. (Lep., Geometridae) mit Hilfe von Markierungen und Pheromonfallen in Ungarn. Anz Schädlingskd Pflanz Umweltschutz 65:88–92

    Google Scholar 

  • Bishop JA, Cook LM, Muggleton J (1978) The response of two species of moths to industrialization in northwest England. II. Relative fitness of morphs and population size. Philos Trans R Soc Lond B 281:517–540

    Google Scholar 

  • Brakefield PM, Liebert TG (1990) The reliability of estimates of migration in the peppered moth Biston betularia and some implications for selection-migration models. Biol J Linn Soc 39: 335–341

    Google Scholar 

  • Brookes MI, Butlin RK (1994) Population structure in the small ermine moth Yponomeuta padellus: an estimate of male dispersal. Ecol Entomol 19:97–107

    Google Scholar 

  • Dempster JP (1971) The population ecology of the cinnabar moth, Tyria jacobaeae L. (Lepidoptera, Arctiidae). Oecologia 7: 26–67

    Google Scholar 

  • Doak DF, Marino PC, Kareiva PM (1992) Spatial scale mediates the influence of habitat fragmentation on dispersal success: implications for conservation. Theor Popul Biol 41:315–336

    Google Scholar 

  • Eklund O (1958) Die Gefässpflanzenflora beiderseits Skiftet im Schärenarchipel Südwestfinnlands. Bidr Finlands Nat Folk 101:1–342

    Google Scholar 

  • Elkinton JS, Cardé RT (1980) Distribution, dispersal, and apparent survival of male gypsy moths as determined by capture in pheromone-baited traps. Environ Entomol 9:729–737

    Google Scholar 

  • Emmet J (1991) Chart showing the life history and habits of the British Lepidoptera. In: Heath J, Emmet A (eds) The moths and butterflies of Great Britain and Ireland, vol 7 (2): Lasiocampidae — Thyatiridae. Harley, Colchester, pp 61–301

    Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Google Scholar 

  • Fahrig L, Paloheimo J (1988) Determinants of local population size in patchy habitats. Theor Popul Biol 34:194–213

    Google Scholar 

  • Gadgil M (1971) Dispersal: population consequences and evolution. Ecology 52:253–261

    Google Scholar 

  • Greenbank DO, Schaeffer GW, Rainey RC (1980) Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. Mem Entomol Soc Can 110:1–49

    Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578–581

    Google Scholar 

  • Hanski I (1991) Single-species metapopulation dynamics: concepts, models and observations. Biol J Linn Soc 42:17–38

    Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Google Scholar 

  • Hanski I, Kuussaari M (1995) Butterfly metapopulation dynamics. In: Cappuccino N, Price P (eds) Population dynamics. New approaches and synthesis. Academic Press, London, pp 149–171

    Google Scholar 

  • Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv 68:167–180

    Google Scholar 

  • Hanski I, Zhang D-Y (1993) Migration, metapopulation dynamics and fugitive co-existence. J Theor Biol 163:491–504

    Google Scholar 

  • Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–762

    Google Scholar 

  • Hanski I, Pakkala T, Kuussaari M, Lei G (1995a) Metapopulation persistence of an endangered butterfly in a fragmented landscape. Oikos 72:21–28

    Google Scholar 

  • Hanski I, Pöyry J, Pakkala T, Kuussaari M (1995b) Multiple equilibria in metapopulation dynamics. Nature 377:618–621

    Google Scholar 

  • Hanski I, Moilanen A, Gyllenberg M (1996) Minimum viable metapopulation size. Am Nat. 147:527–541

    Google Scholar 

  • Hastings A, Harrison S (1994) Metapopulation dynamics and genetics. Annu Rev Ecol Syst 25:167–188

    Google Scholar 

  • Jalas I (1960) Eine leichtegebaute, leichttransportable Lichtreuse zum Fangen von Schmetterlingen. Annales Entomol Fenn 26: 44–50

    Google Scholar 

  • Jalas I (1975) Perhostenkeräilijän opas. Otava, Keuruu

    Google Scholar 

  • Jolly GM (1965) Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52:225–247

    Google Scholar 

  • Kettlewell B (1973) The evolution of melanism. The study of a recurring necessity. Clarendon Press, Oxford

    Google Scholar 

  • Kugelberg O (1968) Mating and ovary studies on Cerapteryx graminis L. (Lep. Noctuidae), collected from a light-trap. Opusc Entomol 33:107–110

    Google Scholar 

  • Mafra-Neto A, Cardé RT (1994) Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144

    Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–1027

    Google Scholar 

  • Mook JH, Toorn J van der (1985) Delayed response of common reed Phragmites australis to herbivory as a cause of cyclic fluctuations in the density of the moth Archanara geminipuncta. Oikos 44:142–148

    Google Scholar 

  • Murphy DD, Menninger MS, Ehrlich PR, Wilcox BA (1986) Local population dynamics of adult butterflies and the conservation status of two closely related species. Biol Conserv 37:201–223

    Google Scholar 

  • Nordman AF (1961) Temperaturdifferenser mellan land och hav, en viktig faktor vid fjärilmigrationer över havet. Not Entomol 41:45–61

    Google Scholar 

  • Olivieri I, Michalakis Y, Gouyon P-H (1995) Metapopulation genetics and the evolution of dispersal. Am Nat 146:202–228

    Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman and Hall, London

    Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Google Scholar 

  • Ramaswamy SB, Cardé RT, Witter JA (1983) Relationship between catch in pheromone-baited traps and larval density of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can Entomol 115:1437–1443

    Google Scholar 

  • Sanders CJ (1983) Local dispersal of male spruce budworm (Lepidoptera: Tortricidae) moths determined by mark, release, and recapture. Can Entomol 115:1065–1070

    Google Scholar 

  • Schoener TW, Spiller DA (1987) High population persistence in a system with high turnover. Nature 330:474–477

    Google Scholar 

  • Scott JA (1975) Flight patterns among eleven species of diurnal Lepidoptera. Ecology 56:1367–1377

    Google Scholar 

  • Seppänen EJ (1970) Suurperhostoukkien ravintokasvit. WSOY, Porvoo

    Google Scholar 

  • Showers WB, Keaster AJ, Raulston JR, Hendrix III WH, Derrick ME, McCorcle MD, Robinson JF, Way MO, Wallendorf MJ, Goodenough JL (1993) Mechanism of southward migration of a noctuid moth [Agrotis ipsilon (Hufnagel)]: a complete migrant. Ecology 74:2303–2314

    Google Scholar 

  • Shreeve TG (1992a) Adult behaviour. In: Dennis LH (ed) The ecology of butterflies in Britain. Oxford Science, Oxford, pp 22–45

    Google Scholar 

  • Shreeve TG (1992b) Monitoring butterfly movements. In: Dennis LH (ed) The ecology of butterflies in Britain. Oxford Science, Oxford, pp 120–138

    Google Scholar 

  • Shreeve TG (1995) Butterly mobility. In: Pullin AS (ed) Ecology and conservation of butterflies. Chapman and Hall, London, pp 37–45

    Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants. Community patterns and mechanisms. Blackwell, Oxford

    Google Scholar 

  • Suckling DM, Brunner JF, Burnip GM, Walker JTS (1994) Dispersal of Epiphyas postvittana (Walker) and Planotortrix octo Dugdale (Lepidoptera: Tortricidae) at a Canterbury; New Zealand orchard. N Z J Crop Hort Sci 22:225–234

    Google Scholar 

  • Suski ZW, Łabanowski GS, Nowakowski Z (1981) Dispersal of laboratory-reared codling moth males, Laspeyresia pomonella (L.), in central Poland. Ekol Pol 29:441–449

    Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Google Scholar 

  • Tscharntke T (1992) Fragmentation of Phragmites habitats, minimum viable population size, habitat suitability, and local extinction of moths, midges, flies, aphids, and birds. Conserv Biol 6:530–536

    Google Scholar 

  • Utrio P (1995) Yöperhosten lentolämpötiloista ja ravintoekologiasta. Baptria 20:113–122

    Google Scholar 

  • Väisänen R, Hublin C (1983) The effect of continuous light-trapping on moth populations. A mark-recapture experiment on Hydraecia petasitis (Lepidoptera, Noctuidae). Not Entomol 63: 187–191

    Google Scholar 

  • Varis V, Ahola M, Albrecht A, Jalava J, Kaila L, Kerppola S, Kullberg J (1995) Checklist of Finnish Lepidoptera — Suomen perhosten luettelo. Sahlbergia 2:1–80

    Google Scholar 

  • Wakamura S, Kozai S, Kegasawa K, Inoue H (1992) Population dynamics of adult Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae): estimation of male density by using release-recapture data. Appl Entomol Zool 27:1–8

    Google Scholar 

  • Warren MS (1987) The ecology and conservation of the heath fritillary, Mellicta athalia. II. Adult population structure and mobility. J Appl Ecol 24:483–498

    Google Scholar 

  • White RJ (1985) Some population study methods illustrated with the scarlet tiger moth. In: Cook LM (ed) Case studies in population biology. Manchester University Press, Manchester, pp 27–60

    Google Scholar 

  • Wiener P, Feldman MW (1993) The effects of the mating system on the evolution of migration in a spatially heterogeneous population. Evol Ecol 7:251–269

    Google Scholar 

  • Wiener P, Tuljapurkar S (1994) Migration in variable environments: exploring life-history evolution using structured population models. J theor Biol 166:75–90

    Google Scholar 

  • Witz JA, Lopez Jr JD, Latheef MA (1992) Field density estimates of Heliothis virescens (Lepidoptera: Noctuidae) from catches in sex pheromone-baited traps. Bull Entomol Res 82:281–286

    Google Scholar 

  • Woiwod IP, Stewart AJA (1990) Butterflies and moths — migration in the agricultural environment. In: Bunce RGH, Howard DC (eds) Species dispersal in agricultural habitats. Bellhaven, London, pp 189–202

    Google Scholar 

  • Woiwod IP, Wynne IR (1994) The distribution and genetic structure of farmland moth communities. In: Dover J (ed) Fragmentation in agricultural landscapes (proceedings of the third annual conference of IALE, UK). Pp 137–144

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieminen, M. Migration of moth species in a network of small islands. Oecologia 108, 643–651 (1996). https://doi.org/10.1007/BF00329038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329038

Key words

Navigation