Skip to main content
Log in

Dilatational bands in rubber-toughened polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A theory is advanced to explain the effects of rubber particle cavitation upon the deformation and fracture of rubber-modified plastics. The criteria for cavitation in triaxially-stressed particles are first analysed using an energy-balance approach. It is shown that the volume strain in a rubber particle, its diameter and the shear modulus of the rubber are all important in determining whether void formation occurs. The effects of rubber particle cavitation on shear yielding are then discussed in the light of earlier theories of dilatational band formation in metals. A model proposed by Berg, and later developed by Gurson, is adapted to include the effects of mean stress on yielding and applied to toughened plastics. The model predicts the formation of cavitated shear bands (dilatational bands) at angles to the tensile axis that are determined by the current effective void content of the material. Band angles are calculated on the assumption that all of the rubber particles in a band undergo cavitation and the effective void content is equal to the particle volume fraction. The results are in satisfactory agreement with observations recorded in the literature on toughened plastics. The theory accounts for observed changes in the kinetics of tensile deformation in toughened nylon following cavitation and explains the effects of particle size and rubber modulus on the brittle-tough transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Bucknall, “Toughened Plastics” (Applied Science Publishers, London, 1977).

    Book  Google Scholar 

  2. P. Beahan, A. Thomas and M. Bevis, J. Mater. Sci. 11 (1976) 1207.

    Article  Google Scholar 

  3. A. M. Donald and E. J. Kramer, J. Appl. Polym. Sci. 27 (1982) 3729.

    Article  CAS  Google Scholar 

  4. G. H. Michler, Acta Polymerica 36 (1985) 285.

    Article  CAS  Google Scholar 

  5. R. A. Bubeck, D. J. Buckley, E. J. Kramer and H. Brown, J. Mater. Sci. 26 (1991) 6249.

    Article  CAS  Google Scholar 

  6. A. S. Argon and M. M. Salama, Mater. Sci. Engng 23 (1977) 219.

    Article  Google Scholar 

  7. H. Breuer, F. Haaf, and J. Stabenow, J. Macromol. Sci.-Phys. B14 (1977) 387.

    Article  CAS  Google Scholar 

  8. G. H. Michler, Colloid Polym. Sci. 267 (1989) 377.

    Article  CAS  Google Scholar 

  9. A. F. Yee and R. A. Pearson, J. Mater. Sci. 21 (1869) 2462.

    Article  Google Scholar 

  10. Idem., ibid. 21 (1986) 2475.

    Article  Google Scholar 

  11. H.-J. Sue, ibid. 27 (1992) 3098.

    Article  CAS  Google Scholar 

  12. A. Lazzeri, PhD thesis, Cranfield Institute of Technology, Cranfield, UK (1991)

    Google Scholar 

  13. A. F. Yee and R. A. Pearson, in “Fractography and Failure Mechanisms of Polymers and Composites ” edited by A. C. Roulin-Moloney (Elsevier Applied Science, London, 1989) p. 291.

    Google Scholar 

  14. R. J. M. Borggreve, R. J. Gaymans and H. M. Eichenwald, Polymer 30 (1989) 78.

    Article  CAS  Google Scholar 

  15. A. J. Oostenbrink, L. J. Molenaar and R. J. Gaymans, Third European Symposium on Polymer Blends, Cambridge, 24–26 July 1990 (Plastics and Rubber Institute, London, 1990) paper E3.

    Google Scholar 

  16. F. Ramsteiner, Kunststoffe 73(3) (1983) 148.

    CAS  Google Scholar 

  17. F. Ramsteiner and W. Heckmann, Polym. Commun. 26 (1985) 199.

    CAS  Google Scholar 

  18. F. Speroni, E. Castoldi, P. Fabbri and T. Casiraghi, J. Mater. Sci. 24 (1989) 2165.

    Article  CAS  Google Scholar 

  19. C. B. Bucknall, P. Heather and A. Lazzeri, ibid. 24 (1989) 1489.

    Article  Google Scholar 

  20. K. Dijkstra, PhD thesis, University of Twente, Netherlands (1993).

    Google Scholar 

  21. A. N. Gent and C. Wang, J. Mater. Sci. 26 (1991) 3392.

    Article  Google Scholar 

  22. D. C. Edwards, ibid. 25 (1992) 4175.

    Article  Google Scholar 

  23. H. Vangerko and L. R. G. Treloar, J. Phys. D Appl. Phys. 11 (1978) 1969.

    Article  CAS  Google Scholar 

  24. P. F. Thomason, “Ductile Fracture of Metals” (Pergamon Press, Oxford, 1991).

    Google Scholar 

  25. A. L. Gurson, J. Eng. Mater. Technol., Trans. ASME 99 (1977) 2.

    Article  Google Scholar 

  26. C. A. Berg, in “Inelastic Behaviour of Solids”, edited by M. F. Kanninen (McGraw-Hill, New York, 1970) p. 171.

    Google Scholar 

  27. I. M. Ward, J. Mater. Sci. 6 (1971) 1397.

    Article  CAS  Google Scholar 

  28. N. Brown, in “Failure of Plastics”, edited by W. Brostow (Hanser Publishers, Munich, 1986).

    Google Scholar 

  29. R. J. Young and P. A. Lovell, “Introduction to Polymers”, 2nd Edn (Chapman & Hall, London, 1991).

    Book  Google Scholar 

  30. A. L. Gurson, PhD thesis, Brown University (1975).

  31. Idem., in Proceedings of the International Conference on Fracture, ICF4 Fracture 1977, Waterloo, Canada, Vol. 2A (Pergamon Press, Oxford, 1977) p. 357.

    Google Scholar 

  32. R. Hill, “The Mathematical Theory of Plasticity” (The University Press, Oxford, 1950).

    Google Scholar 

  33. H. Yamamoto, Int. J. Fract. 14 (1978) 347.

    Article  Google Scholar 

  34. P. B. Bowden, in “The Physics of Glassy Polymers”, edited by R. N. Haward (Applied Science Publishers, London, 1973).

    Google Scholar 

  35. I. M. Ward, “Mechanical Properties of Solid Polymers” (Wiley, New York, 1983) p. 362.

    Google Scholar 

  36. J. F. W. Bishop and R. Hill, Phil. Mag. 42 (1951) 414.

    Article  CAS  Google Scholar 

  37. Idem., ibid. 42 (1951) 1298.

    Article  CAS  Google Scholar 

  38. J. C. Bauwens, J. Polym. Sci. A-2 5 (1967) 1145.

    Article  CAS  Google Scholar 

  39. Idem., ibid. 8 (1970) 893.

    Article  CAS  Google Scholar 

  40. P. B. Bowden and J. A. Jukes, J. Mater. Sci. 7 (1972) 52.

    Article  CAS  Google Scholar 

  41. A. S. Argon, R. D. Andrews, J. A. Godrick and W. Whitney, J. Appl. Phys. 39 (1968) 1899.

    Article  CAS  Google Scholar 

  42. R. P. Kambour, Nature 195 (1962) 1299.

    Article  CAS  Google Scholar 

  43. Idem., Polymer 5 (1964) 143.

    Article  CAS  Google Scholar 

  44. A. M. Donald and E. J. Kramer, J. Polym. Sci. Polym. Phys. 20 (1982) 899.

    Article  CAS  Google Scholar 

  45. P. L. Fernando and J. G. Williams, Polym. Engng Sci. 20 (1980) 215.

    Article  CAS  Google Scholar 

  46. O. F. Yap, Y.-W. Mai and B. Cotterell, J. Mater. Sci. 18 (1983) 657.

    Article  CAS  Google Scholar 

  47. E. J. Kramer. Polym. Engng Sci. 24 (1984) 761.

    Article  CAS  Google Scholar 

  48. S. Wu, Polymer 26 (1985) 1855.

    Article  CAS  Google Scholar 

  49. Idem., J. Appl. Polym. Sci. 35 (1988) 349.

    Article  Google Scholar 

  50. R. J. M. Borggreve, R. J. Gaymans, J. Schuijer and J. F. Ingen-Housz, Polymer 28 (1987) 1489.

    Article  CAS  Google Scholar 

  51. R. J. M. Borggreve, R. J. Gaymans and J. Schuijer, ibid. 30 (1989) 71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzeri, A., Bucknall, C.B. Dilatational bands in rubber-toughened polymers. JOURNAL OF MATERIALS SCIENCE 28, 6799–6808 (1993). https://doi.org/10.1007/BF00356433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356433

Keywords

Navigation