Skip to main content
Log in

Inverted high-temperature quartz

Unit cell parameters and properties of the α-β inversion

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Fifty-two samples of inverted high-temperature quartz from volcanic rocks were investigated by Guinier-Jago powder diffractometry and differential scanning calorimetry (DSC). Quartz megacrysts from Clear Lake and Cinder Cone, California show a variability of ≃2.5 ° K in their α-β transition temperature (T α-β). Quartz phenocrysts and quartz from crystalline rocks give a range of 0.5 ° K in T α-β. Neutron activation analysis of single crystals demonstrates that Al is the principal impurity (17–380 ppm). Its concentration is inversely correlated with T α-β. A very small variation was found in the a and c lattice parameters among the specimens of volcanic quartz studied. This variation does not correlate with Al content or transition temperature. Mean values at 22 ° C (a=4.1934±0.0004 Å, c=5.4046±0.0006 Å) are similar to those of quartz grown at low temperatures. Enthalpy of the α-β transition (ΔH α-β), obtained over 9.0 ° from DSC runs, is dependent upon sample grain size and for a crushed powder with zero hysteresis (T α-β on heating=T α-β on cooling) is 92.0 ±1.4 cal/mol. In contrast, a single piece of quartz requires ΔH α-β be 107.7±1.4 cal/mol and has a T α-β hysteresis of 1.1 ° K.

Regression of published data provides equations for the variation of the molar volume (cc/mol) of quartz with v. These equations imply a ΔV α-β of 0.205±0.031 cc/- mol. Expressions are also provided for the temperature dependence of the thermal coefficient of expansion, α, the compressibility, β, and (∂/gb/∂T)p (which is identically -(∂α/∂P) T ).

DSC heat capacity measurements over the range 400 to 900 ° K were fitted to extended Maier-Kelley type expressions to give:

$$\begin{gathered} C_P = 10.31 + 9.116 \times 10^{ - 3} T - \frac{{1.812 \times 10^5 }}{{T^2 }} \hfill \\ - {\text{5}}{\text{.630}} \times 10^{ - 2} {\text{ }}\frac{T}{{(T - 848)}} - 0.3553\frac{T}{{(T - 848)^2 }} \hfill \\ - 0.9011\frac{T}{{\left( {T - 848} \right)^3 }} \hfill \\ (400{\text{ to 842}}^ \circ {\text{K), and}} \hfill \\ C_P = - 318.8 + 0.2532T \hfill \\ {\text{ + }}\frac{{8.687 \times 10^7 }}{{T^2 }} + 0.1603\frac{T}{{\left( {T - 848} \right)^4 }} \hfill \\ \end{gathered} $$

(851 to 900 ° K), which together with the values of ΔH α−β measured over the range 842–851° K give 7875.3 cal/mol for H900-H400.

The behavior of α, β, and C p as a function of T emphasizes that structural changes which occur at the α−β transition do so over a broad temperature interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanas'eva, N.A., Kamentsev, I.E., Frank-Kamentskii, V.A.: Variation of the elementary cell parameters of quartz of different sources. Sov. Phys. Cryst. 4, 354–357 (1959)

    Google Scholar 

  • Anderson, C.A.: Volcanic history of the Clear Lake area. Geol. Soc. Am. Bull. 47, 629–664 (1926)

    Google Scholar 

  • Bacon, C.R., Duffield, W.A.: Phenocryst mineralogy of Pleistocene rhyolites and heat content of the Coso geothermal system, California. Geol. Soc. Am. Abs. Annual Meeting. 8, 761 (1976)

    Google Scholar 

  • Bambauer, H.U. von: Spurenelementgehalte und γ-Farbzentren in Quarzen aus Zerklüften der Schweizer Alpen. Schweiz. Mineral, und Petrog. Mitt. 41, 335–369 (1961)

    Google Scholar 

  • Batcheldar, J.: Light stable isotope and fluid inclusion study of the porphyry copper deposit at Copper Canyon, Nevada. Econ. Geol. 72, 60–70 (1977)

    Google Scholar 

  • Berger, C., Eyraud, L., Richard, M., Riviere, R.: Étude radiocristal-lographique de variation de volume pour quelques matériaux subissant der transformations de phase solide-solide. Société Chimique de France, Bull. 628‐633 (1966)

  • Berger, C., Richard, M., Eyraud, L.: Application de la microcalorimétrie é la détermination précise des variations d'enthalpie de quelques transformations solide-solide. Société Chimique de France, Bull. 1491–1491 (1965)

  • Birch, F.: Compressibility; elastic constants. In: Handbook of physical constants (S.P. Clark, ed.) Geol. Soc. Am. Mem. 97, 97–173 (1966)

  • Bohlen, S.R., Essene, E.J.: Feldspar and oxide thermometry of granulites in the Adirondack Highlands. Contrib. Mineral. Petrol. 62, 153–169 (1977)

    Article  Google Scholar 

  • Bradley, W.F., Grim, R.E.: High temperature thermal effects of clay and related minerals. Am. Mineral. 36, 182–201 (1951)

    Google Scholar 

  • Bragg, W., Gibbs, R.E.: The structure of α and β quartz. Proc. Roy. Soc. London. 109 A, 405–427 (1925)

    Google Scholar 

  • Brimhall, G.H.: Early fracture-controlled disseminated mineralization at Butte, Montana. Econ. Geol. 72, 37–59 (1977)

    Article  Google Scholar 

  • Brimhall, G.H.: written communication (1978)

  • Buerger, M.J.: The stuffed derivatives of the silica structures. Am. Mineral. 39, 600–614 (1954)

    Google Scholar 

  • Bystrikov, A.S.: The nature of the low high transformation in quartz. Geochem. Internat. 223–229 (1966)

  • Carmichael, I.S.E.: Pantelleritic liquids and their phenocrysts. Mineral. Mag. 33, 86–113 (1962a)

    Google Scholar 

  • Carmichael, I.S.E.: A note on the composition of some natural acid glasses. Geol. Mag. 99, 253–264 (1962b)

    Article  Google Scholar 

  • Carmichael, I.S.E.: The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib. Mineral. Petrol. 14, 36–64 (1967)

    Article  Google Scholar 

  • Clocchiatti, R., Bassett, A.M.: Skeletal growth and melt inclusions in quartz crystals of rhyodacite ignimbrites of the Valley of Ten Thousand Smokes, Katmai, Alaska. EOS Trans. Am. Geophys. Union. 59, 225 (1978)

    Google Scholar 

  • Coe, R.S., Paterson, M.S.: The α-β Inversion in quartz: A coherent phase transition under nonhydrostatic stress. J. Geophys. Res. 74, 4921–4948 (1969)

    Google Scholar 

  • Coenen, M.: Über die Hoch-Tief-Umwandlung von Quarz. Silicates Ind. 28, 147 (1963)

    Google Scholar 

  • Cohen, A.J., Sumner, G.G.: Relationships among impurity contents, color centers and lattice constants in quartz. Am. Mineral. 43, 58–68 (1958)

    Google Scholar 

  • Cohen, L.H., Klement, W.: High-low quartz inversion: determination to 35 kilobars. J. Geophys. Res. 72, 4245–4251 (1967)

    Article  Google Scholar 

  • Cohen, L.H., Klement, W., Adams, H.G.: Yet more observations on the high-low quartz inversion: Thermal analysis studies to 7kbar with single crystals. Am. Mineral. 59, 1099–1104 (1974)

    Google Scholar 

  • Comer, J.J.: Electron microscope study of Dauphiné microgrowths formed in synthetic quartz. J. Cryst. Growth. 15, 179–187 (1972)

    Article  Google Scholar 

  • Denbigh, K.: The Principles of Chemical Equilibrium, 3rd edition. 494 pp. London: Cambridge Univ. Press 1971

    Google Scholar 

  • Dennen, K.: Impurities in quartz. Geol. Soc. Am. Bull. 75, 241–246 (1964)

    Google Scholar 

  • Dennen, W.H.: Stoichiometric substitution in natural quartz. Geochim. Cosmochim. Acta. 30, 1235–1241 (1966)

    Article  Google Scholar 

  • Dennen, W.H., Blackburn, W.H., Quesada, A.: Aluminium in quartz as a geothermometer. Contrib. Mineral. Petrol. 27, 332–342 (1970)

    Article  Google Scholar 

  • Donnelly, J.M., Hearn, B.C.: Geochronology and evolution of the Clear Lake Volcanics, Northern California. Geol. Soc. Am. Abs. Cordilleran Section. 10, 103 (1978)

    Google Scholar 

  • Ewart, A., Taylor, S.R., Capp, A.C.: Geochemistry of the pantellerites of Mayor Island, New Zealand. Contrib. Mineral. Petrol. 17, 116–140 (1968)

    Article  Google Scholar 

  • Finch, R.H., Anderson, C.A.: The quartz basalt eruptions of Cinder Cone, Lassen Volcanic National Park, California. U.C. Publ. Geol. Soc. Bull. 19, 245–273 (1930)

    Google Scholar 

  • French, B.M., Jezek, P.A., Appleman, D.E.: Virgilite: a new lithium aluminum silicate mineral from the Macusani glass, Peru. Am. Mineral. 63, 461–465 (1978)

    Google Scholar 

  • Frondel, C.: The System of Mineralogy, Vol. 3, pp. 1–334. New York: John Wiley and Sons Inc. 1962

    Google Scholar 

  • Gibbs, R.E.: Structure of α quartz. Proc. Roy. Soc. London. 110A, 443–455 (1926)

    Google Scholar 

  • Gibson, R.E.: The influence of pressure on the high-low inversion of quartz. J. Phys. Chem. 32, 1197–1210 (1928)

    Article  Google Scholar 

  • Giret, A., Lameyre, J., Levy, C., Marion, C.: La transformation α -β der quartz naturels: un indicateur de degré de metamorphisme. Compt. Rend. Acad. Sci. Paris [D] 125, 161–164 (1972)

    Google Scholar 

  • Geothem, L. van, Landuyt, J. van, Amelinckx, S.: The α-β transition in amthyst quartz as studied by electron microscopy and diffraction. Phys. Status Solidi (A) 41, 129–137 (1977)

    Google Scholar 

  • Gurvich, L.V., Khachkuruzov, G.A., Mevedev, V.A.: Termodina-micheskuye Svoistva Individual'nykh Veshchestv, vol. 1(1) (Academician, V.P. Glushko, ed.). Izd. Akad. Nauk SSSR Moscow (1962)

    Google Scholar 

  • Hanic, F., Šumichrast, C.: Alpha-beta phase transition in quartz. Silikáty. 18, 1–9 (1974)

    Google Scholar 

  • Harper, G.: personal communication (1977)

  • Hearn, B.C., Donnelly, J.M., Goff, F.E.: Preliminary geologic map and cross section of the Clear Lake Volcanic Field, Lake County, California. U.S. Geol. Survey Open File Map 76–751 (1976)

  • Helgeson, H.C., Delaney, J.M., Nesbitt, H.W., Bird, D.C.: Summary and critique of the thermodynamic properties of rock-forming minerals. Am J. Sci. 278A, 1–229 (1978)

    Article  Google Scholar 

  • Hildreth, E.W.: The magma chamber of the Bishop Tuff: Gradients in temperature, pressure, and composition. PhD thesis, U.C. Berkeley. 328 pp. Berkeley, California. (1976)

    Google Scholar 

  • Hildreth, E.W.: written communication (1978)

  • Jay, A.H.: The thermal expansion of quartz by X-ray measurements. Proc. Roy. Soc. London. 142A, 237–247 (1933)

    Google Scholar 

  • Kamentsev, I.Ye.: Effect of temperature of crystallization on the entry of aluminum into the structure of natural quartz. Geochem. Intern. 237 (1965)

  • Kartenko, N.F., Sidorenko, G.A., Šolomkina, S.G., Dudikina, A.S.: Structural typomorphical features of quartz. Mineralogicheskii Sbornik. 21, 134–141 (1967)

    Google Scholar 

  • Keith, M.L., Tuttle, O.F.: Significance of variation in the high-low inversion of quartz. Am. J. Sci. 253a, 203–280 (1952)

    Google Scholar 

  • Kelley, K.K.: High temperature heat-content, heat capacity, and entropy data for the elements and inorganic compounds. U.S. Bureau of Mines Bull. 584, 232pp. (1960)

  • Klotz, I.M., Rosenberg, R.M.: Chemical Thermodynamics, 3red. ed. W.A. Benjamin Inc. 444 pp. (1972)

  • Konno, H.: Trace elements in colorless quartz. Tôhoku Univ. Sci. Reports. Ser. 3, 10, 349–357 (1969)

    Google Scholar 

  • Koster van Groos, A.F., Ter Heege, J.P.: The high-low quartz transition up to 10 kilobars pressure. J. Geol. 81, 717–724 (1973)

    Article  Google Scholar 

  • Kôzu, S., Takané, K.: Influence of temperature on the axial ratio, the interfacial angle and the volume of quartz. Tôhoku Imp. Univ. Sci. Reports. Ser. 3, 239–246 (1929)

    Google Scholar 

  • Lameyre, J., Levy, C., Mergoil, J.: Étude par analyse thermique différentielle de quartz de leucogranites et de schistes cristallins du massif central français. Bull. Soc. Franc. Minéral. Crist. 91, 172–181 (1968)

    Google Scholar 

  • Leonidov, V.Ya., Barskii, Yu.P., Khitarov, NI., Vernadskii, V.I.: Determination of heat capacities of kyanite and quartz at high temperatures by thermal analysis. Geochem. Internat. 409–412 (1964)

  • Leonidov, V.Ya., Barskiy, Yu.P.: Determination of the heat capacities of quartz, kyanite and granite at high temperatures. Geochem. Internat. 1138–1142 (1965)

  • Le Chatelier, H.: Sur la dialation du quartz. Bull. Soc. Franç. Minéral. 13, 112–118 (1890a)

    Google Scholar 

  • Le Chatelier, H.: Sur la polarisation rotatoire du quartz. Bull. Soc. Franc. Mineral. 13, 119–123 (1890b)

    Google Scholar 

  • Mahood, G.: personal communication (1978)

  • Majumdat, A.J., McKinstry, H.A., Roy, R.: Thermodynamic parameters for the α—β quartz and α—β cristobalite transitions. J. Phys. Chem. Solids. 25, 1487–1389 (1964)

    Article  Google Scholar 

  • Mallard, MM.Er., Le Chatelier, H.: Sur la variation qu'éprouvent avec la température, les biréfringences du quartz, de la barytine et due disthène. Bull. Soc. Franç. Minéral. 13, 123–129 (1890)

    Google Scholar 

  • Marsh, B.D., Carmichael, I.S.E.: Benioff zone magmatism. J. Geophys. Res. 76, 1196–1206 (1974)

    Google Scholar 

  • Mayer, G.: Recherches expérimentales sur une transformation du quartz. Commissariat a l'énergie atomique (France), C.E.A. 1330, 101pp. (1960)

    Google Scholar 

  • McLaren, A.C., Phakey, P.P.: Electron microscope study of diffraction contrast from Dauphiné twin boundaries in quartz. Phys. Status Solidi 31, 723–737 (1969)

    Google Scholar 

  • Nicholls, J., Carmichael, I.S.E.: Peralkaline acid liquids: A petrological study. Contrib. Mineral. Petrol. 20, 268–294 (1969)

    Article  Google Scholar 

  • O'Neil, J.R.: personal communication (1978)

  • O'Neil, J.R., Ghent, E.D.: Stable isotope study of coexisting metamorphic minerals from the Esplanade Range, British Columbia. Geol. Soc. Am. Bull. 86, 1708–1712 (1975)

    Article  Google Scholar 

  • Panov, Ye.N., Muratov, I.G., Kasatov, B.K.: Investigation of variations in the α-β transition temperature for quartz from ganitoids in northeastern Transbaikal. Dokl. Akad. Nauk. SSSR. 175, 146–149 (1967)

    Google Scholar 

  • Pippard, A.B.: The Elements of Classical Thermodynamics. 165 pp. London: Cambridge Univ. Press 1957

    Google Scholar 

  • Robie, R.A., Hemingway, B.S., Fisher, J.R.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Sur. Bull. 1452, 456 pp. (1978)

    Google Scholar 

  • Sabatier, G., Wyart, J.: Variations des parametres cristallins et de la température de transformation α-β dans des quartz de synthèse. Acad. Sci. Paris. Compt. Rend. 239, 1053–1055 (1954)

    Google Scholar 

  • Sandell, E.B.: Colorimetric Determination of Traces of Metals, 3rd edition, 1032 pp., New York: Interscience Publishers Inc. 1959

    Google Scholar 

  • Schreyer, W., Schairer, J.F.: Metastable solid solutions with quartz-type structures on the join SiO2-MgAl2O4. Z. Krist. 116, 60–82 (1961)

    Article  Google Scholar 

  • Schultz, H., Tscherry, V.: Structural relations between the low and high temperature forms of β-eucryptite (LiAlSiO4) and low and high quartz. I. Low temperature form of β-eucryptite and low quartz. Acta Cryst. B 28, 2168–2173 (1972a)

    Article  Google Scholar 

  • Schultz, H., Tscherry, V.: Structural relations between the low and high temperature forms of β-eucryptite (LiAlSiO4) and low and high quartz. II. High temperature form of β-eucryptite and high quartz. Acta. Cryst. B 28, 2174–2177 (1972b)

    Article  Google Scholar 

  • Scotford, D.M.: A test of aluminum in quartz as a geothermometer. Am. Mineral. 60, 139–142 (1975)

    Google Scholar 

  • Skinner, B.J.: Thermal expansion. In: Handbook of Physical Constants (S.P. Clark, ed.). Geol. Soc. Am. Mem. 97, 75–96 (1966)

  • Silverman, S.M.: α-β transformation of quartz. J. Chem. Phys. 25, 1081 (1956)

    Article  Google Scholar 

  • Silverman, S.M.: On the thermal expansion and contraction of quartz. J. Geophys. Res. 75, 406–408 (1970)

    Google Scholar 

  • Sinel'nikov, N.N.: A vacuum adiabatic calorimeter and some new data on the α-β transition for quartz. Dokl. Akad. Nauk SSSR. 92, 369–372 (1953)

    Google Scholar 

  • Smith, A.L., Carmichael, I.S.E.: Quaternary lavas from the Southern Cascades, Western U.S.A. Contrib. Mineral. Petrol. 19, 212–238 (1968)

    Article  Google Scholar 

  • Smykatz-Kloss, W.: Die Hoch-Tiefquartz-Inversion als petrologisches Hilfsmittel. Contrib. Mineral. Petrol. 26, 20–41 (1970)

    Article  Google Scholar 

  • Sosman, R.B.: The Properties of Silica. 856pp., New York: Chemical Catalog Company, Inc. 1927

    Google Scholar 

  • Stavrov, O.D.: On the content of rare elements in quartz. Geochemistry. 6, 542–549 (1961)

    Google Scholar 

  • Steinwehr, H.E. von: Umwandlung α=β-Quarz. Z. Krist. 99, 292–313 (1938)

    Google Scholar 

  • Stull, D.R., Prophet, H.: JANAF Thermochemical Tables. 2nd. edition, U.S. Dept. Commerce, Nat. Bureau of Standards (1971)

  • Tendeloo, G. van, Landuyt, J. van, Amelinckx, S.: Electron microscope observations of the domain structure and the diffuse electron scattering in quartz and in aluminum phosphate in the vicinity of the α=β transition. Phys. Status Solidi. 30A, K11-K15 (1975)

    Google Scholar 

  • Tendeloo, G. van, Laduyt, J. van., Amelinckx, S.: The α=β phase transition in quartz and AlPO4 as studied by electron microscopy and diffraction. Phys. Status Solidi. 33A, 723–735 (1976)

    Google Scholar 

  • Tuttle, O.F.: The variable inversion temperature of quartz as a possible geologic thermometer. Am. Mineral. 34, 723–730 (1949)

    Google Scholar 

  • Valley, I.W.: Written communication (1978)

  • Wallenczak, Z.: Geochemistry of minor elements dispersed in quartz (Ge, Al, Ga, Fe, Ti, Li, and Be). (Polish) Archiwum Mineralogiczne. 189–335 (1969)

  • Wright, F.E., Larsen, E.S.: Quartz as a geologic thermometer. Am. J. Sci., Series IV, 27, 421–447 (1909)

    Google Scholar 

  • Wychoff, R.W.G.: The crystal structure of the high temperature (β-) modification of quartz. Am. J. Sci. 11, 101–112 (1926)

    Article  Google Scholar 

  • Yoder, H.S.: High-low quartz inversion up to 10000 bars. Trans. Am. Geophys. Union. 31, 827–835 (1950)

    Google Scholar 

  • Young, R.A.: Physical properties of quartz at and near the transition. Proc. 12th Nat. Conf. Clays and Clay Minerals. 83 (1964)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghiorso, M.S., Carmichael, I.S.E. & Moret, L.K. Inverted high-temperature quartz. Contr. Mineral. and Petrol. 68, 307–323 (1979). https://doi.org/10.1007/BF00371553

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371553

Keywords

Navigation