Skip to main content
Log in

Relaxation and viscoelastic properties of complex polymer systems

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Dynamic behavior of various polymer melts is studied on the basis of a comparison of viscoelastic properties with the information obtained from dielectric spectroscopy. The experimental observations are compared with results of computer simulation of corresponding systems. The studies include simple melts of linear chains, block copolymer systems of miscible components, as well as the behavior of melts with molecular objects of complex topology-like stars or microgels. In the case of polyisoprene linear chain melts an equivalence of terminal relaxation times determined from mechanical and dielectric measurements is demonstrated. Using linear block copolymers of isoprene and butadiene, relaxation times of chain fragments (isoprene blocks) in relation to relaxation times of whole copolymer chains are determined and compared with theory and simulation. Both the experimentally determined block relaxation times and relaxation times of chain fragments in simulated linear chain melts show a disagreement with predictions of the reptation theory. In the case of multiarm star polymers and microgel melts, the slow relaxation modes observed in viscoelastic spectra are assigned to cooperative translational motions detected in corresponding simulated systems in which an ordering of such molecules is demonstrated. This suggests that the terminal relaxation in multiarm star or microgel melts is governed by another relaxation mechanism than in linear chain melts. High efficiency of the Cooperative Motion Algorithm in simulation of dense systems of complex molecules is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  2. Adachi K, Kotaka T (1993) Prog Polym Sci 18:589

    Google Scholar 

  3. Ewen B, Richter D, Farago B, Fetters LJ, Huang JS, Maschke U (1992) Proc Am Chem Soc Div Polym Mater Sci Eng 67:211

    Google Scholar 

  4. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford, UK

    Google Scholar 

  5. “Monte Carlo and molecular dynamics simulations in polymer science” (Binder K, ed.). Oxford Univ Press 1995

  6. Hansen JP, McDonald IR (1986) “Theory of simple liquids”. Academic Press, London

    Google Scholar 

  7. Brawer S, “Relaxation in viscous liquids and glasses”. Amer Ceram Soc, Columbus, 1985

    Google Scholar 

  8. Verdier PH, Stockmayer WH (1967) J Chem Phys 36:227;

    Google Scholar 

  9. Lal M (1969) Mol Phys 17:57;

    Google Scholar 

  10. Wall FT, Mandel F (1975) J Chem Phys 63:4592;

    Google Scholar 

  11. Carmesin I, Kremer K (1988) Macromolecules 21:2819;

    Google Scholar 

  12. Binder K, Kremer K (1988) Comput Phys Rep 7:261

    Google Scholar 

  13. Reiter J, Edling T, Pakula T (1990) J Chem Phys 93:837

    Google Scholar 

  14. Pakula T (1987) Macromolecules 20:679;

    Google Scholar 

  15. Pakula T, Geyler S (1987) Macromolecules 20:2909

    Google Scholar 

  16. De Gennes PG (1991) J Chem Phys 55:572

    Google Scholar 

  17. Graesley WW (1982) Adv Polym Sci 47:67

    Google Scholar 

  18. Onogi S, Masuda T, Kitagawa K (1970) Macromolecules 3:109

    Google Scholar 

  19. Boese D, Kremer F (1990) Macromolecules 23:8298

    Google Scholar 

  20. Boese D, Kremer F, Fetters LJ (1990) Macromolecules 23:1826

    Google Scholar 

  21. Richter D, Butera R, Fetters LJ, Huang JS, Farago B, Ewen B (1992) Macromolecules 25:6167

    Google Scholar 

  22. Ewen B, Maschke U, Richter D, Farago B (1994) Acta Polym 45:143

    Google Scholar 

  23. McKenna GB, Hadzioannou G, Lutz P, Held G, Strazielle C, Straupe C, Remp P, Kovacs AJ (1987) Macromolecules 20:489

    Google Scholar 

  24. Fetters LJ, Kiss AD, Pearson DS, Quack GF, Vitus FJ (1993) Macromolecules 26:647

    Google Scholar 

  25. Roovers J, Zbou Lin-Lin, Toporowski PM, van der Zwan M, Iatron H, Hadjichristidis N (1993) Macromolecules 25:4324; Roovers J, Vlassopoulos D, Pakula T, in preparation

    Google Scholar 

  26. McCarthy TF, Witteler H, Pakula T, Wegner G (1995) Macromolecules 28:8350

    Google Scholar 

  27. Antonietti M, Pakula T, Bremser W (1995) Macromolecules 28:4227

    Google Scholar 

  28. Geyler S, PhD Thesis, Mainz 1990

  29. Kremer F, Boese D, Meier G, Fischer EW (1989) Prog Coll Polym Sci 129:80

    Google Scholar 

  30. Edling T, PhD Thesis, Mainz 1994

  31. Stockmayer WH (1967) Pure Appl Chem 15:539

    Google Scholar 

  32. Reiter J (1991) J Chem Phys 94:3222

    Google Scholar 

  33. Ronca G (1983) J Chem Phys 79:1031

    Google Scholar 

  34. Gauger A, Weyersberg A, Pakula T (1993) Macromol Chem Theory Simul 2:531

    Google Scholar 

  35. Gauger A, Pakula T (1995) Macromolecules 28:190

    Google Scholar 

  36. Pakula T, Geyler S (1988) Macromolecules 21:1665

    Google Scholar 

  37. Grest GS, Kremer K, Milner ST, Witten TA (1989) Macromolecules 22:1904

    Google Scholar 

  38. Pakula T (1991) J Chem Phys 94:2104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Professor Tasos C. Papanastasiou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakula, T., Geyler, S., Edling, T. et al. Relaxation and viscoelastic properties of complex polymer systems. Rheola Acta 35, 631–644 (1996). https://doi.org/10.1007/BF00396512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396512

Key words

Navigation