Skip to main content
Log in

On the metabolism of the purple sulphur bacteria in organic media

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

  1. 1.

    The purple sulphur bacteria are able to develop in media containing only one simple, nitrogen-free organic compound, in the absence of oxidizable sulphur compounds.

  2. 2.

    Radiant energy is indispensable for development in these media.

  3. 3.

    A quantitative chemical investigation has been carried out of the metabolism in cultures containing lactate, pyruvate, acetate, succinate, malate or butyrate as the organic substrate.

  4. 4.

    In these cultures practically no metabolic products other than relatively small amounts of CO2 have been detected; in the butyrate cultures CO2 is taken up instead of being formed.

  5. 5.

    By determining the carbon content of the bacterial substance synthesized in the cultures, it has been shown that in all probability the substrate is completely converted into cell material and CO2, i. o. w. that the assimilation predominates in the metabolism.

  6. 6.

    The differences in the amount of CO2 formed (or taken up) per unit of substrate consumed in cultures with different substrates are caused by the different oxidation values of the various substrates, the average oxidation value of the cell material of the bacteria being approximately the same with all substrates.

  7. 7.

    Since a consideration of assimilation in general leads to the insight that the greater majority of organic cell constituents is formed from the substrate via pyruvic acid, the ways in which this acid can be formed from the various substrates used in the experiments have been discussed.

  8. 8.

    The conversion of the substrate into pyruvic acid involves one or more dehydrogenations; a consideration of the hydrogen acceptors which may effect this dehydrogenation shows that CO2 must play a prominent part as an acceptor in this process.

  9. 9.

    In connection with point 2 this leads to the conclusion that photosynthetic processes are involved in the metabolism of the purple sulphur bacteria in organic media.

  10. 10.

    In the equation for photosynthesis in general:

    $${\text{CO}}_{\text{2}} {\text{ + }} {\text{2H}}_{\text{2}} {\text{A}} \to {\text{CH}}_{\text{2}} {\text{O}} {\text{ + }} {\text{2A}} {\text{ + }} {\text{H}}_{\text{2}} {\text{O}}$$

    H2A may now be replaced by organic substances as well as by H2S or H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. G. Ahlgren, Skand. Arch. f. Physiol. 47, Suppl. 1, 1925.

  2. J. K. Baars, Diss. Delft 1930.

  3. W. Bavendamm, Die farblosen und roten Schwefelbakterien. Jena 1924.

  4. K. Bernhauer, Die oxydativen Gärungen. Berlin 1932.

  5. K. Bernhauer u. W. Stein, Biochem. Zeitschr. 249, 219, 1932.

    Google Scholar 

  6. R. E. Buchanan and E. I. Fulmer, Physiology and Biochemistry of Bacteria, Vol. I. Baltimore 1928.

  7. J. Buder, Jahrb. f. wiss. Bot. 58, 525, 1919.

    Google Scholar 

  8. E. Cahen and W. H. Hurtley, Biochem. J. 11, 164, 1917.

    Google Scholar 

  9. Ph. D. Coppock, V. Subramaniam and T. K. Walker, J. chem. Soc. 1928, p. 1422.

  10. Th. W. Engelmann, Arch. Néerland. 23, 151, 1888.

    Google Scholar 

  11. H. Haehn u. W. Kinttof, Chem. d. Zelle u. Gewebe 12, 115, 1926.

    Google Scholar 

  12. J. Heslinga, Rec. Trav. chim. Pays-bas 43, 551, 1924.

    Google Scholar 

  13. E. W. Hopkins, W. H. Peterson and E. B. Fred, J. of biol. Chem. 85, 21, 1929.

    Google Scholar 

  14. A. W. K. de Jong, Rec. Trav. chim. Pays-bas 19, 259, 1900; 20, 81, 1901; 20, 382, 1901; 21, 191, 1902; 21, 299, 1902; 23, 131, 1904.

    Google Scholar 

  15. H. D. Kay and H. S. Raper, Biochem. J. 16, 465, 1922; 19, 153, 1925.

    Google Scholar 

  16. G. Klein u. O. Werner, Zeitschr. f. physiol. Chem. 143, 141, 1925.

    Google Scholar 

  17. A. J. Kluyver, Arch. f. Mikrobiol. 1, 181, 1930.

    Google Scholar 

  18. Derselbe A. J. Kluyver, The chemical Activities of Microorganisms. London 1931.

  19. A. J. Kluyver u. H. J. L. Donker, Chem. d. Zelle u. Gewebe 13, 134, 1926.

    Google Scholar 

  20. A. J. Kluyver, H. J. L. Donker, u. F. Visser't Hooft, Biochem. Zeitschr. 161, 360, 1925.

    Google Scholar 

  21. F. Knoop, Samml. chem. u. chem.-techn. Vorträge, neue Folge, Heft 9, 1931.

  22. F. Knoop u. H. Oesterlin, Zeitschr. f. physiol. Chem. 148, 294, 1925; 170, 186, 1927.

    Google Scholar 

  23. J. B. van der Lek, Diss. Delft 1930.

  24. H. Molisch, Die Purpurbakterien nach neuen Untersuchungen. Jena 1907.

  25. C. Moritz u. R. Wolffenstein, Ber. d. chem. Ges. 32, 2531, 1899.

    Google Scholar 

  26. C. B. van Niel, Biochem. Zeitschr. 187, 472, 1927.

    Google Scholar 

  27. Derselbe C. B. van Niel, Diss. Delft 1928.

  28. —Derselbe, Arch. f. Mikrobiol. 3, 1, 1931.

    Google Scholar 

  29. C. B. van Niel and F. M. Muller, Rec. Trav. bot. Néerland. 28, 245, 1931.

    Google Scholar 

  30. C. Oppenheimer, Grundriß der Physiologie, Teil I: Biochemie. Leipzig 1925.

  31. J. H. Quastel, Biochem. J. 18, 365, 1924.

    Google Scholar 

  32. —Derselbe, —ebenda 19, 641, 1925.

    Google Scholar 

  33. —Derselbe, —ebenda 20, 166, 1926.

    Google Scholar 

  34. J. H. Quastel and M. Dampier Whetham, —ebenda 18, 519, 1924.

    Google Scholar 

  35. J. Smit, Diss. Amsterdam 1913.

  36. N. L. Söhngen, Diss. Delft 1906.

  37. H. B. Stant, V. Subramaniam and T. K. Walker, J. chem. Soc. 1929, p. 1987.

  38. T. Thunberg, Skand. Arch. f. Physiol. 40, 1, 1920.

    Google Scholar 

  39. P. E. Verkade, M. Elzas, J. van der Lee, H. H. de Wolff, A. Verkade-Sandbergen and D. van de Sande, Proc. Kon. Akad. v. Wetensch. 35, 251, 1932.

    Google Scholar 

  40. S. A. Waksman, Principles of Soil Microbiology. Baltimore 1927.

  41. H. Wieland, Ergebn. d. Physiol. 20, 477, 1922.

    Google Scholar 

  42. Derselbe H. Wieland in C. Oppenheimer, Handb. d. Biochem. d. Menschen u. d. Tiere 2, Jena 1925.

  43. S. Winogradsky, Zur Morphologie und Physiologie der Schwefelbakterien. Leipzig 1888.

  44. —Derselbe, Bull. de l'Inst. Pasterur 29, 679, 1931.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, F.M. On the metabolism of the purple sulphur bacteria in organic media. Archiv. Mikrobiol. 4, 131–166 (1933). https://doi.org/10.1007/BF00407535

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407535

Keywords

Navigation