Skip to main content
Log in

Influence of grain size on the mechanical behaviour of some high strength materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Combining in an additive or synergetic manner the most potent strengthening mechanisms available in an alloy is the art of the metallurgist. The various models proposed in the literature in order to interpret the Hall-Petch relation are critically reviewed by comparison with experimental data. The pile-up models and the work hardening theories must include the inner structure of the grain in the case of alloys hardened by a second phase. Similarly, the properties and structure of the grain boundaries are influenced by impurities or the presence of particles. Ultra-fine grain sizes can provide ductility to high strength materials when surface preparation eliminates microcracks.

In steady-state creep equations, introducing the influence of grain size in complex alloys by incorporating the Hall-Petch stress as one component of the internal stress helps in rationalizing the existence of an optimal grain size where creep resistance is maximized. Slower crack growth rates can be obtained by controlling the grain boundary structure as well as grain size. Fatigue tests at room temperature clearly point out the interest of small grain sizes for reducing crack initiation, usually associated, however, with lower propagation threshold and somewhat faster growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kutumba Rao, D. M. R. Taplin and P. R. Rao, Met. Trans. 6A (1975) 77.

    Google Scholar 

  2. T. B. Gibbons and B. E. Hopkins, Met. Sci. 5 (1971) 233.

    Google Scholar 

  3. R. W. Cahn, Ann. Rev. Mater. Sci. 12 (1982) 51.

    Google Scholar 

  4. E. O. Hall, Proc. Phys. Soc. (London) B64 (1951) 747.

    Google Scholar 

  5. N. J. Petch, J. Iron Steel Inst. 174 (1953) 25.

    Google Scholar 

  6. J. C. M. Li and Y. T. Chou, Met. Trans. 1 (1970) 1145.

    Google Scholar 

  7. R. W. Armstrong, “Yield, Flow and Fracture of Polycrystals”, edited by T. N. Baker (Applied Science, Cambridge, 1983) p. 1.

    Google Scholar 

  8. A. H. Cottrell, Trans. TMS AIME 212 (1958) 192.

    Google Scholar 

  9. J. C. M. Li and G. C. T. Liu, Phil. Mag. 38 (1967) 1059.

    Google Scholar 

  10. R. Armstrong, I. Codd, R. M. Douthwaite and N. J. Petch, ibid. 7 (1962) 45.

    Google Scholar 

  11. J. D. Meakin and N. J. Petch, Symposium on the Role of Substructure in the Mechanical Behaviour of Metals, Air Force Systems Command, ASD TDR 63-234, Orlando, FL, April (1963) p. 243.

  12. M. F. Ashby, Phil. Mag. 21 (1970) 399.

    Google Scholar 

  13. A. W. Thompson, M. I. Baskes and W. F. Flanagan, Ada Metall. 21 (1973) 1017.

    Google Scholar 

  14. J. C. M. Li, J. Appl. Phys. 32 (1961) 525.

    Google Scholar 

  15. Idem, Trans. TMS AIME 227 (1963) 247.

    Google Scholar 

  16. U. F. Kocks, Met. Trans. 1 (1970) 1121.

    Google Scholar 

  17. D. E. Sonon and G. V. Smith, Trans. AIME 242 (1968) 1527.

    Google Scholar 

  18. B. A. Wilcox and A. H. Clauer, Acta Metall. 20 (1972) 743.

    Google Scholar 

  19. Y. Nakada and A. S. Keh, Met. Trans. 2 (1971) 441.

    Google Scholar 

  20. A. W. Thompson, Acta Metall. 23 (1975) 1337.

    Google Scholar 

  21. R. D. Carnahan and J. E. White, Phil. Mag. 10 (1964) 513.

    Google Scholar 

  22. A. I. Taub, M. R. Jackson, S. C. Huang and E. L. Hall, “Rapidly Solidified Metastable Materials” edited by B. H. Kear and B. C. Giessen (Elsevier, Amsterdam, 1984) p. 389.

    Google Scholar 

  23. A. W. Thompson, Acta Metall. 25 (1977) 83.

    Google Scholar 

  24. S. Floreen and J. H. Westbrook, ibid. 17 (1969) 1175.

    Google Scholar 

  25. B. A. Wilcox and A. H. Clauer, “The Superalloys” edited by C. T. Sims and W. C. Hagel (John Wiley, Chichester, 1972) p. 197.

    Google Scholar 

  26. A. J. Taub, S. C. Huang and K. M. Chang, Met. Trans. 15A (1984) 399.

    Google Scholar 

  27. M. Kuhlmeyer, Proceedings of ICSMA 5, edited by A. Haasen et al. (Pergamon, Oxford, 1979) p. 855.

    Google Scholar 

  28. E. Werner and H. P. Stüwe, Mater. Sci. Eng. 68 (1985) 175.

    Google Scholar 

  29. J. Wert, Proceedings of ISCMA 6, Melbourne (1982), edited by R. C. Gifkins (Pergamon) p. 339.

  30. Y. W. Kim and W. M. Griffith, “PM Aerospace Materials” (Bern, 1984) Metal Powder Report (1985) Vol. 1, p. 33.

    Google Scholar 

  31. Y. Higo, A. C. Pikard and J. F. Knott, Met. Sci. 15 (1981) 233.

    Google Scholar 

  32. N. Hansen, “Yield, Flow and Fracture of Polycrystals” edited by T. N. Baker (Applied Science, Cambridge, 1983) p. 311.

    Google Scholar 

  33. C. Y. Barlow, A. J. Porter and B. Ralph, Proceedings of the 2nd RISØ International Symposium, edited by N. Hansen, A. Hoisewell, T. Liffins and H. Lilholt (RISØ, 1981) p. 131.

  34. D. Mclean, Proceedings of ICSMA 4, Nancy 1976 (Laboratoire de physique du solide EMSMIH, Nancy) Vol. 3, p. 958.

    Google Scholar 

  35. V. V. Karaeva and V. F. Sakhovarov, Izv. Vyssl. Ycheb. Zaved 5 (1965) 40.

    Google Scholar 

  36. D. V. Wilson, Mel. Sci. 1 (1967) 40.

    Google Scholar 

  37. L. E. Murr, Mater. Sci. Eng. 51 (1981) 71.

    Google Scholar 

  38. A. Mascanzoni and G. Buzzichelli, Phil. Mag. 22 (1970) 857.

    Google Scholar 

  39. E. Venkastesh and L. E. Murr, Mater. Sci. Eng. 33 (1978) 69.

    Google Scholar 

  40. J. M. Bernstein and B. B. Rath, Surf. Sci. 31 (1972) 97.

    Google Scholar 

  41. L. A. Davis, “Metallic Glasses” (ASM Metals Park, Ohio, 1978) p. 190.

    Google Scholar 

  42. E. P. Abrahamson, “Surfaces and Interfaces II” edited by A. Burke et al. (Syracuse University Press, New York, 1968) p. 262.

    Google Scholar 

  43. R. W. Armstrong, Proceedings of ISCMA 5, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon Press, Oxford, 1979) p. 795.

    Google Scholar 

  44. D. J. Lloyd, Mater. Sci. 14 (1980) 193.

    Google Scholar 

  45. M. R. Jackson, J. R. Rairden, J. S. Smith and R. W. Smith, J. Metals 33 (1981) 23.

    Google Scholar 

  46. A. Inoue, H. Tamioka and T. Masumoto, J. Mater. Sci. Lett. 1 (1982) 377.

    Google Scholar 

  47. E. Schulson and D. R. Barker, Scripta Metall. 17 (1983) 519.

    Google Scholar 

  48. K. Aoki and O. Izumi, J. Jpn Inst. Met. 43 (1979) 1190.

    Google Scholar 

  49. A. Inoue, H. Tomioka and T. Masumoto, Met. Trans. 14A (1983) 1367.

    Google Scholar 

  50. E. M. Schulson, Res. Mech. Lett. 1 (1981) 111.

    Google Scholar 

  51. A. H. Cottrell, Trans. AIME 212 (1958) 192.

    Google Scholar 

  52. S. L. Mannan, K. G. Samuel and P. Rodriguez, Mater. Sci. Eng. 68 (1985) 143.

    Google Scholar 

  53. M. F. Ashby, Acta Metall. 20 (1972) 887.

    Google Scholar 

  54. F. A. Mohamed and T. G. Langdon, Met. Trans. 5 (1974) 2339.

    Google Scholar 

  55. Idem, J. Eng. Mater. Technol. 98 (1976) 125.

    Google Scholar 

  56. A. Luhy, R. A. White and O. D. Sherby, Mater. Sci. Eng. 39 (1979) 211.

    Google Scholar 

  57. O. A. Ruano and O. D. Sherby, ibid. 56 (1982) 167.

    Google Scholar 

  58. J. Crampon and B. Escaig, J. Amer. Ceram. Soc. 63 (1980) 680.

    Google Scholar 

  59. V. Lupinc and T. B. Gibbons, “High Temperature Alloys for Gas Turbines”, edited by D. Coutsouradis, P. Felix, H. Fischmeister, L. Habraken, Y. Lindblom and M. O. Speidel (Applied Science, 1978) p. 335.

  60. F. Garofalo, “Fundamentals of Creep and Creep Rupture in Metals” (Macmillan, London, 1965) p. 27.

    Google Scholar 

  61. J. P. Denisson, P. D. Holmes and B. Wilshire, Mater. Sci. Eng. 33 (1978) 35.

    Google Scholar 

  62. J. N. Vincent and L. Remy, Advances in Fracture Research, 1984, Proceedings of ICF6, edited by S. R. Valluri, D. H. R. Taplin, P. Rama Rao, J. F. Knott and R. Dubey (Pergamon, 1985) Vol. 4, p. 2513.

  63. C. Carry and J. L. Strudel, Acta Metall. 26 (1978) 859.

    Google Scholar 

  64. S. L. Mannan and P. Rodriguez, Met. Sci. 17 (1983) 63.

    Google Scholar 

  65. S. H. Reichman and J. W. Smith, Int. J. Powder Met. 6 (1970) 65.

    Google Scholar 

  66. R. G. Menzies, G. H. Davies and J. W. Edington, Met. Sci. 16 (1982) 356.

    Google Scholar 

  67. J. P. A. Immarigeon and P. H. Floyd, Met. Trans. 12A (1981) 1177.

    Google Scholar 

  68. R. C. Gifkins, ibid. 7A (1976) 1225.

    Google Scholar 

  69. J. W. Edington, ibid. 13A (1982) 703.

    Google Scholar 

  70. E. Arzt and R. F. Singer, “Superalloys 1984” edited by M. Gell, C. S. Kortovich, W. B. Kent and J. F. Radavich, (AIME Conference Proceedings, 1984) p. 367.

  71. F. T. Furillo, J. M. Davidson and J. K. Tien, Mater. Sci. Eng. 39 (1979) 267.

    Google Scholar 

  72. J. M. Larson and S. Floreen, Met. Trans. 8A (1977) 51.

    Google Scholar 

  73. K. Sadananda and P. Shahinian, Met. Sci. 15 (1981) 425.

    Google Scholar 

  74. J. T. Barnby, Eng. Fract. Mech. 7 (1975) 299.

    Google Scholar 

  75. S. Floreen and R. H. Kane, Met. Trans. 7A (1976) 1157.

    Google Scholar 

  76. J. H. Davidson and C. Aubin, “High Temperature Alloys for Gas Turbines”, edited by A. Brunetaud et al. (Reidel, New York, 1982) p. 853.

    Google Scholar 

  77. F. L. Versnyder, ibid.“, p. 33.

    Google Scholar 

  78. E. A. Starke Jr and G. Lutjering, Proceedings of the ASM Seminar on Materials Science Fatigue and Microstrueture, October 1978, St. Louis, Missouri (ASM, Metals Park, Ohio, 1978) p. 205.

    Google Scholar 

  79. E. Hornbogen and K. H. Zum Gahr, Acta Metall. 24 (1970) 581.

    Google Scholar 

  80. J. E. King, Met. Sci. 16 (1982) 345.

    Google Scholar 

  81. B. A. Lerch, N. Jayaraman and S. D. Antolovich, Mater. Sci. Eng. 16 (1982) 345.

    Google Scholar 

  82. M. A. Hicks and J. E. King, Int. J. Fatigue 5 (1983) 67.

    Google Scholar 

  83. R. A. Venables, M. A. Hicks and J. E. King, Fatigue Crack Growth — Threshold Concepts, ASM Fall Meeting, Philadelphia (1983) edited by D. L. Davidson and S. Surech (Metallurgical Society AIME, 1983) p. 341.

  84. P. Lukas and L. Kung, Mater. Sci. Eng. 62 (1984) 149.

    Google Scholar 

  85. J. Lindigkeit, G. Terlinde, A. Gysler and G. Lutzering, Acta. Metall. 27 (1979) 1717.

    Google Scholar 

  86. R. O. Ritchie, Met. Sci. 11 (1977) 368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasalmonie, A., Strudel, J.L. Influence of grain size on the mechanical behaviour of some high strength materials. J Mater Sci 21, 1837–1852 (1986). https://doi.org/10.1007/BF00547918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547918

Keywords

Navigation