Skip to main content
Log in

The role of alloying elements in the design of nickel-base superalloys

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The constituents of nickel-base superalloys have been classified into solid solution formers, precipitate formers, carbide formers and surface stabilizers. The characteristics of solutes which would make them most suitable in each category have been specified and appropriate alloying elements have been identified. Nickel-base superalloys are hardened primarily by the precipitation of Ni3X type compounds. The occurrence and crystallography of precipitation of various kinds of Ni3X type precipitates have been considered. The role of substitution by alloying elements on mismatch and stability of phases has been discussed. The free electron model and the Engel-Brewer model have been applied for evaluating the stabilities of precipitates, and the role of the alloying elements in determining the stabilities of external and internal surfaces such as grain boundaries have been briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Wahll, D. J. Maykuth and H. J. Hucek, in “Handbook of Superalloys” (Battelle Press, Columbus, 1979) p. 1.

    Google Scholar 

  2. R. W. Fawley, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 3.

    Google Scholar 

  3. P. S. Kotval, Metallogr. 1 (1969) 251.

    Google Scholar 

  4. G. P. Sabol and R. Stickler, Phys. Status Solidi 35 (11) (1969) 11.

    Google Scholar 

  5. R. F. Decker and C. T. Sims, in “The Super-alloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1979) p. 33.

    Google Scholar 

  6. R. T. Holt and W. Wallace, Int. Metals Rev. 21 (1976) 1.

    Google Scholar 

  7. Oleg D. Sherby and Peter M. Burke, Progr. Mater. Sci. 13 (7) (1967) 325.

    Google Scholar 

  8. W. Hume-Rothery and G. V. Raynor, “The Structure of Metals and Alloys”, 4th Edn. (Revised) (The Institute of Metals, London, 1967) p. 91.

    Google Scholar 

  9. M. Hansen and K. Anderko, “Constitution of Binary Alloys”, 2nd Edn. (McGraw Hill, New York, 1958); R. P. Elliott, first supplement (1965); F. A. Shunk, second supplement (1969).

    Google Scholar 

  10. R. M. N. Pelloux and N. J. Grant, Trans. Met. Soc. AIME 218 (1960) 232.

    Google Scholar 

  11. B. E. P. Beeston and L. K. France, J. Inst. Metals 96 (1969) 105.

    Google Scholar 

  12. P. C. J. Gallagher, Met. Trans. 1 (1970) 2429.

    Google Scholar 

  13. W. B. Pearson, “A Handbook of Lattice Spacing and Structures of Metals and Alloys” (Pergamon Press, Oxford, 1967).

    Google Scholar 

  14. A. K. Jena, D. Gulati and T. R. Ramachandran, Z. Metalkde 39 (1948) 111.

    Google Scholar 

  15. C. J. Smithells, “Metals Reference Book”, 5th Edn. (Butterworths, London, 1976) p. 860.

    Google Scholar 

  16. W. Koster and W. Rauscher, Z. Metalkde 39 (1948) 111.

    Google Scholar 

  17. L. W. Woodyatt, C. T. Sims and H. J. Beattie, Trans. AIME 236 (1966) 519.

    Google Scholar 

  18. M. Sakakibara and S. Sekino, in “Superalloy Processing” (Metals and Ceramics Information Centre, Battelle, Columbus, Ohio, 1972) p. I-1.

    Google Scholar 

  19. Y. S. Wang, X. M. Guan, H. Q. Ye, J. Bi and A. S. Xu, in “Superalloys 1980” (ASM, 1980) p. 63.

  20. C. L. White, J. H. Schreibel and R. A. Padgett, Met. Tram. 14A (1983) 595.

    Google Scholar 

  21. C. L. White and R. A. Padgett, Scripta Metall. 16 (1982) 461.

    Google Scholar 

  22. P. M. Kelly, Int. Met. Rev. 18 (1973) 31.

    Google Scholar 

  23. P. Nash and D. R. F. West, Met. Sci. 17 (1983) 99.

    Google Scholar 

  24. O. H. Kriege and J. M. Baris, Trans. ASM 62 (1969) 195.

    Google Scholar 

  25. E. Hornbogen and M. Roth, Z. Metalkde 58 (1967) 842.

    Google Scholar 

  26. A. J. Ardell and R. B. Nicholson, J. Phys. Chem. Solids 27 (1966) 1793.

    Google Scholar 

  27. Idem, Acta Metall. 14 (1966) 1295.

    Google Scholar 

  28. W. E. Quist, R. Taggart and D. H. Polonis, Met. Trans. 2 (1971) 825.

    Google Scholar 

  29. K. Saito and R. Watanabe, Jap. J. Appl. Phys. 8 (1969) 14.

    Google Scholar 

  30. D. H. Ben Israel and M. E. Fine, Acta Metall. 11 (1963) 1051.

    Google Scholar 

  31. B. R. Clark and F. B. Pickering, J. Iron Steel Inst. 205 (1967) 70.

    Google Scholar 

  32. H. A. Moreen, R. Taggart and D. H. Polonis, Met. Trans. 5 (1974) 79.

    Google Scholar 

  33. Idem, Metallogr. 7 (1974) 513.

    Google Scholar 

  34. M. Raghavan, Met. Trans. 8A (1977) 1071.

    Google Scholar 

  35. D. W. Chung and M. C. Chaturvedi, Met. Sci. 8 (1974) 215.

    Google Scholar 

  36. M. C. Chaturvedi and D. W. Chung, Met. Trans. 10 (1979) 1579.

    Google Scholar 

  37. J. Manenc, Acta Metall. 7 (1959) 124.

    Google Scholar 

  38. I. Kirman and D. H. Warrington, J. Iron Steel Inst. 205 (1967) 1264; 99 (1971) 197.

    Google Scholar 

  39. W. C. Hagel and H. J. Beattie, in “Precipitation Processes in Steel” (The Iron and Steel Institute, London, 1959) p. 98.

    Google Scholar 

  40. M. Raghavan, Met. Trans. 9A (1978) 734.

    Google Scholar 

  41. Idem, ibid. 10A (1979) 1399.

    Google Scholar 

  42. M. Frebel, B. Predel and U. Klisa, Z. Metalkde 65 (1974) 311.

    Google Scholar 

  43. J. K. Tien and R. P. Gamble, Met. Trans. 3 (1972) 2157.

    Google Scholar 

  44. T. Miyazaki, K. Nakamura and H. Mori, J. Mater. Sci. 14 (1979) 1827.

    Google Scholar 

  45. D. D. Pearson, F. D. Lemkey and B. H. Kear, in “Superalloys 1980” (ASM, 1980) p. 513.

  46. S. E. Axter and D. H. Polonis, Meter. Sci. Eng. 36 (1978) 71.

    Google Scholar 

  47. A. K. Jena and M. C. Chaturvedi, to be published.

  48. J. H. Moll, G. N. Maniar and D. R. Muzyka, Met. Trans. 2 (1971) 2153.

    Google Scholar 

  49. C. P. Sullivan and M. J. Donachie, Met. Eng. Q. 11(4) (1971) 1.

    Google Scholar 

  50. C. Ravindran and M. C. Chaturvedi, Met. Trans. 6a (1975) 213.

    Google Scholar 

  51. J. R. Mihalisin and R. F. Decker, Trans. AIME 218 (1960) 507.

    Google Scholar 

  52. R. Cozar and A. Pineau, Met. Trans. 5 (1974) 2471.

    Google Scholar 

  53. D. Raynor and J. M. Silcock, Metal. Sci. J. 4 (1970) 121.

    Google Scholar 

  54. R. W. Guard and J. H. Westbrook, Trans. AIME 215 (1959) 807.

    Google Scholar 

  55. P. Nash and D. R. F. West, Met. Sci. 13 (1979) 670.

    Google Scholar 

  56. A. Taylor and R. W. Floyd, J. Inst. Metals 81 (1952–53) 25.

    Google Scholar 

  57. E. L. Raymond and D. A. Wells, in “Superalloy Processing” (Metals and Ceramics Information Center, Battelle, Columbus, Ohio 1972) p. N-1.

    Google Scholar 

  58. R. Nordheim and N. J. Grant, Trans. AIME 200 (1954) 211.

    Google Scholar 

  59. E. C. Guo and F. J. Ma, in “Superalloys 1980” (ASM, 1980) p. 431.

  60. W. Hume-Rothery, Progr. Mater. Sci. 13(5) (1967) 229.

    Google Scholar 

  61. L. Brewer, UCRL Report 10701 (University of California, Berkeley, 1964); “High Strength Materials”, edited by V. F. Zackay (Wiley, New York, 1965) Ch. 2.

    Google Scholar 

  62. C. Wagner, Z. Electrochem. 65 (1961) 581.

    Google Scholar 

  63. Ya-Fang Han, P. Deb and M. C. Chaturvedi, Met. Sci. 16 (1982) 555.

    Google Scholar 

  64. W. I. Mitchell, Z. Metalkde 55 (1964) 613.

    Google Scholar 

  65. E. A. Fell, Metallurgia 63 (1961) 157.

    Google Scholar 

  66. D. W. Chung and M. C. Chaturvedi, Metallogr. 8 (1975) 329.

    Google Scholar 

  67. G. Chen, X. Xie, K. Ni, Z. Xu, D. Wang, M. Zhang and Y. Ju, in “Superalloys 1980” (ASM, 1980) p. 323.

  68. G. Chen, C. Yao, Z. Zhong and W. Yu, in “Superalloys 1980” (ASM, 1980) p. 355.

  69. C. T. Sims, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 259.

    Google Scholar 

  70. L. R. Woodyatt, C. T. Sims and H. J. Beattie, Tram. AIME 236 (1966) 519.

    Google Scholar 

  71. J. R. Mihalisin, C. G. Bieber and R. T. Grant, Trans. AIME 242 (1968) 2399.

    Google Scholar 

  72. F. J. Rizzo and J. D. Buzzanell, J. Metals 21(10) (1969) 24.

    Google Scholar 

  73. C. T. Sims, ibid. 18 (1966) 1119.

    Google Scholar 

  74. C. Lund and J. F. Radavich, in “Superalloys 1980” (ASM, 1980) p. 85.

  75. H. J. Beattie and W. C. Hagel, Trans. AIME 233 (1965) 277.

    Google Scholar 

  76. L. A. Jackman, H. B. Canada and F. E. Sczerzenie, in “Superalloys 1980” (ASM, 1980) p. 365.

  77. Y. S. Wang, X. M. Guan, H. Q. Ye, J. Bi and A. S. Xu, ibid., p. 63.

  78. H. E. Collins, Trans. ASM 62 (1969) 82.

    Google Scholar 

  79. G. E. Wasielewski and R. A. Rapp, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 287.

    Google Scholar 

  80. D. P. Whittle and J. Stringer, Phil. Trans. Roy. Soc. Lond. A295 (1980) 309.

    Google Scholar 

  81. A. M. Beltran and D. A. Shores, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 317.

    Google Scholar 

  82. R. Morbioli and H. Gilder, in “High Temperature Alloys for Gas Turbines”, edited by D. Coutsouradis, P. Felix, H. Fischmeister, L. Habraken, Y. Lindblom and M. O. Speidel (Applied Science, London, 1978) p. 125.

    Google Scholar 

  83. G. S. Giggins and F. S. Pettit, Trans. Met. Soc. AIME 245 (1969) 2495.

    Google Scholar 

  84. E. P. Whelan, in “Superalloys 1980” (ASM, 1980) p. 53.

  85. A. U. Seybolt, G.E. Research Conference Report 70-C-189, June (1970).

  86. A. U. Seybolt and A. M. Beltram, “Hot Corrosion Problems Associated with Gas Turbines”, STP421 (American Society for Testing and Materials, 1967).

  87. G. R. Wallwork and A. Z. Hbd, Oxidat. Metals 3 (1971) 171.

    Google Scholar 

  88. D. P. Whittle, in “High Temperature Alloys for Gas Turbines”, edited by D. Coutsouradis, P. Felix, H. Fischmeister, L. Habraken, Y. Lindblom and M. O. Speidel (Applied Science, London, 1978) p. 109.

    Google Scholar 

  89. K. R. Peters, D. P. Whittle and J. Stringer, Corrosion Sci. 16 (1976) 791.

    Google Scholar 

  90. D. L. Douglass and J. S. Armijo, Oxidat. Metals 2 (1970) 207.

    Google Scholar 

  91. A. U. Seybolt, Corrosion Sci. 11 (1971) 751.

    Google Scholar 

  92. P. Elliot and T. K. Ross, Werkstoffe u. Korrosion 72 (1971) 531.

    Google Scholar 

  93. G. B. Thomas and T. B. Gibbons, in “Superalloys 1980” (ASM, 1980) p. 699.

  94. D. R. Wood and R. M. Cook, Metallurgia 67 (1963) 109.

    Google Scholar 

  95. D. A. Vermilyea, C. S. Tedmon and D. E. Broecker, Corrosion 31 (1975) 222.

    Google Scholar 

  96. W. C. Johnson, J. E. Doherty, B. H. Kear and A. F. Giamei, Scripta Metall. 8 (1974) 971.

    Google Scholar 

  97. R. F. Decker and J. W. Freeman, Trans. AIME 218 (1961) 277.

    Google Scholar 

  98. J. M. Walsh and B. H. Kear, Met. Trans. 6 (1975) 226.

    Google Scholar 

  99. J. E. Doherty, A. F. Giamei and B. H. Kear, Canad. Met. Q. 13 (1974) 229.

    Google Scholar 

  100. R. S. Cremisio, Elec. Furn. Steel. Conf. Proc. 29 (1971) 19.

    Google Scholar 

  101. D. N. Duhl and C. P. Sullivan, J. Metals 23(7) (1971) 88.

    Google Scholar 

  102. T. V. Svistunova and G. V. Estulin, Stal 9 (1963) 725.

    Google Scholar 

  103. H. J. Goldschmidt, J. Iron Steel Inst. (Lond.) 160 (1948) 345; quoted in C. S. Barret, “Structure of Metals” (McGraw-Hill, New York, 1952) p. 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jena, A.K., Chaturvedi, M.C. The role of alloying elements in the design of nickel-base superalloys. J Mater Sci 19, 3121–3139 (1984). https://doi.org/10.1007/BF00549796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549796

Keywords

Navigation