Skip to main content
Log in

Stress relaxation in bending of type AISI 304 and A-286 steels at 773 K

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Stress relaxation measurements at 773 K, in bending and for different initial stresses, in Type AISI 304 and A-286 steels are reported. Several thermomechanical treatments were given to the specimens prior to the relaxation testing. The data are interpreted in terms of a stress-partitioned power law and it is shown, for AISI 304, that, for certain thermomechanical treatments, the internal stress depends on the applied stress since the microstructure recovers during the relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Conway, R. H. Stentz and J. T. Berling, Fatigue, Tensile, and Relaxation Behaviour of Stainless Steels, USAEC Report TID-26135 (1975).

  2. R. W. Rohde and J. C. Swearengen, Transactions of the 4th International Conference on Structural Mechanics in Reactor Technology, edited by A. Jaeger and B. A. Boley (North-Holland, Amsterdam, 1977) Vol. L,p. L8/5.

    Google Scholar 

  3. J. B. Conway, An analysis of the Relaxation Behaviour of AISI 304 and 316 Stainless Steel at Elevated Temperature, USAEC Report GEMP-730, General Electric Company (1969).

  4. M. J. Anciaux, Metall. Trans. 12A (1981) 1981.

    Google Scholar 

  5. E. W. Hart, Trans. J. Eng. Mater. Technol. 98 (1976) 193.

    Google Scholar 

  6. Idem, Transactions of the 4th International Conference on Structural Mechanics in Reactor Technology, edited by A. Jaeger and B. A. Boley (North-Holland, Amsterdam, 1977) Vol. L, p. L1/1*.

    Google Scholar 

  7. H. Yamada and Che-Yu Li, Metall. Trans. 4 (1973) 2133.

    Google Scholar 

  8. J. F. Thomas Jr and F. L. Yaggee, ibid. 6A (1975) 1835.

    Google Scholar 

  9. G. L. Wire, F. V. Ellis and Che-Yu Li, Acta Metall. 24 (1976) 677.

    Google Scholar 

  10. Che-Yu Li, F. V. Ellis and F. H. Huang, “Alloys and Microstructural Design”, edited by J. K. Tien and G. S. Ansell (Academic Press, New York, 1976) p. 403.

    Google Scholar 

  11. N. Nir, F. H. Huang, E. W. Hart and Che-Yu Li, Metall. Trans. 8A (1977) 583.

    Google Scholar 

  12. F. H. Huang, F. V. Ellis and Che-Yu Li, Metall. Trans. 8A (1977) 699.

    Google Scholar 

  13. Y. Yamada, Scripta Metall. 11 (1977) 321.

    Google Scholar 

  14. F. H. Huang, H. Yamada and Che-Yu Li, Proceedings of the V International Conference on Materials Technology, Sao Paulo (1978) p. 83.

  15. R. G. Matters and R. E. Lochen, Proc. ASTM 56 (1956) 672.

    Google Scholar 

  16. D. E. Fraser, P. A. Ross-Ross and A. R. Causey, J. Nucl. Mater. 46 (1973) 281.

    Google Scholar 

  17. F. Povolo and E. H. Toscano, J. Nucl. Mater. 74 (1978) 76.

    Google Scholar 

  18. F. Povolo and E. H. Toscano, ibid. 78 (1978) 217.

    Google Scholar 

  19. L. D. Blackburn, The Generation of Isochronous Stress Strain Curves, ASME Winter Annual Meeting, New York, November 1972 (ASME, New York).

    Google Scholar 

  20. Röchling'sche Eisen -und Stahlwerke GmbH, Handbuch für hochwarmfeste Stähle und Legienrungen (Völklingen, Germany) p. 49.

  21. E. W. Hart, Che-Yu Li, H. Yamada and G. L. Wire, “Constitutive Equations in Plasticity”, edited by A. S. Argon (MIT Press, Cambridge, 1975) p. 149.

    Google Scholar 

  22. F. Povolo, J. Nucl. Mater. 96 (1981) 178.

    Google Scholar 

  23. J. J. Gilman, Austral. J. Phys. 13 (1960) 327.

    Google Scholar 

  24. W. G. Johnston and J. J. Gilman, J. Appl. Phys. 30 (1959) 139.

    Google Scholar 

  25. F. Povolo, Proceedings of the XXXVIII Congresso Anual Associação Brasíleíra de Matais Vol. 3 (ABM, São Paulo, 1983) p. 263.

    Google Scholar 

  26. A. W. Sleeswyk, G. H. Boersma, G. Hunt and D. J. Verel, Proceedings of the 2nd International Conference on Strength of Metals and Alloys, Vol. I (ASM, Ohio, 1976) p. 204.

    Google Scholar 

  27. F. Povolo and M. Higa, J. Nucl. Mater. 91 (1980) 189.

    Google Scholar 

  28. F. Povolo and A. J. Marzocca, J. Mater. Sci. 18 (1983) 1426.

    Google Scholar 

  29. Idem, Trans. Jpn. Inst. Met. 24 (1983) 111.

    Google Scholar 

  30. V. I. Dotsenko, Phys. Status Solidi (b) 93 (1979) 11.

    Google Scholar 

  31. J. Gordon Parr and A. Hanson, “An Introduction to Stainless Steels” (American Society for Metals, Ohio, 1965).

    Google Scholar 

  32. P. L. Threadgill and B. Wilkshire, “Creep Strength in Steels and High Temperature Alloys” (The Metals Society, London, 1974) p. 8.

    Google Scholar 

  33. J. C. Swearengen and R. W. Rhode, Met. Trans. 8A (1977) 577.

    Google Scholar 

  34. N. C. Cole, G. M. Goodwin and G. M. Slaughter, “Microstructural Science”, Vol. 3, edited by P. M. French, R. Gray and J. L. McCall (American Elsevier, 1975) p. 789.

  35. S. W. Yang and J. E. Spruiell, J. Mater. Sci. 17 (1982) 677.

    Google Scholar 

  36. M. S. Anand, B. M. Pande and R. P. Agarwala, J. Nucl. Mater. 58 (1975) 117.

    Google Scholar 

  37. F. E. Fujita and A. C. Damask, Acta Metall. 12 (1964) 331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povolo, F., Tinivella, R. Stress relaxation in bending of type AISI 304 and A-286 steels at 773 K. J Mater Sci 19, 1851–1862 (1984). https://doi.org/10.1007/BF00550255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550255

Keywords

Navigation