Skip to main content
Log in

True stabilization: the behaviour of lead compounds against the thermal decomposition of polyvinyl chloride

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Investigations which have been conducted within the last two decades into the behaviour of basic lead compounds as stabilizers against the thermal dehydrochlorination of polyvinyl chloride are summarized. It is shown that the results can be explained satisfactorily in terms of a free radical dehydrochlorination mechanism and a regenerative exchange process which interferes with the dehydrochlorination. This may be regarded as “true stabilization” in contrast to “hydrogen chloride scavenging”. In true stabilization it is proposed that aliphatic carboxylate groups (such as the stearate ion) react with reservoirs of basic lead compounds (such as white lead) to form relatively mobile salts (such as stearates of lead). Also, it is proposed that these salts take part in exchange reactions with chlorine atoms released by the PVC during free radical decomposition, to give innocuous chlorides of lead and the corresponding aliphatic carboxylate free radicals. Hence the chlorine atoms are trapped and no longer able to propagate dehydrochlorination of the polymer. Further, it is proposed that the aliphatic carboxylate free radicals can esterify PVC chains at sites where prior attack by chlorine atoms has abstracted methylenic hydrogen atoms leaving unpaired electrons. This step eliminates the stimulus for loss of chlorine atoms from the PVC, thereby also interfering with the free radical propagation mechanism. Subsequently, the pendant aliphatic carboxylate groups dissociate from the polymer chains with neighbouring chloromethylenic hydrogen atoms to form the corresponding acids, and leaving the chlorine atoms adjacent to carbon-carbon double bonds in relatively stable vinyl-type positions. The aliphatic carboxylic acids so formed can react with the basic lead compounds reservoir to regenerate mobile salts so that the stabilizing process is therefore continuous and cyclic. It is demonstrated that ionic and unimolecular mechanisms which normally are put forward to explain the behaviour of primary stabilizers in PVC are not satisfactory because they do not account for all observations made with basic lead stabilizing regimes. Other evidence which favours the free radical decomposition and stabilization mechanisms is cited, and a suggestion is made for further work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eur. Plast. News. 11 (1) (1984) 5.

  2. Mod. Plast. Internat. 14 (1) (1984) 21.

  3. Kunststoffe 69 (9) (1979) 497, (English translation in German Plastics69 (1979) 5).

  4. G. Matthews,“Vinyl and Allied Polymers Volume 2 Vinyl Chloride and Vinyl Acetate Polymers” (Iliffe Books, London, 1972), Chapter 5, pp. 62–86.

    Google Scholar 

  5. M. Kaufmann, “The History of PVC” (Mac-Laren and Sons Ltd, London, 1969) Chap. 6, pp. 99–137.

    Google Scholar 

  6. US Patent 2 141 126 (original application: 15th March 1934) British Patent 450 856 (application: 24th January 1935).

  7. H. Barron, H. B. Dean andT. R. Scott,J. Inst. Elect. Eng. 91 (1944) 297.

    Google Scholar 

  8. F. Chevassus andR. De. Broutelles, “The Stabilisation of Polyvinyl Chloride” (Edward Arnold, London, 1963) (English Edition) Chap. IV, pp. 101–164.

    Google Scholar 

  9. W. S. Penn, “PVC Technology” (Applied Science Publishers Ltd, London, 1971) (Third Edition; revised by W. V. Titow and B. J. Lanham), Chap. 11, pp. 177–202.

    Google Scholar 

  10. L. I. Nass, “Encyclopedia of PVC” Vol. 1, edited by L. I. Nass, (Marcel Dekker, Inc, New York, 1976) Chap. 9, pp. 295–384.

    Google Scholar 

  11. A. E. Lever andJ. A. Rhys, “The Properties and Testing of Plastics Materials” (Temple Press Books, London, 1968) (Third Edition) pp. 180, 318.

    Google Scholar 

  12. “Handbook of Plastics Test Methods”, edited by R. P. Brown, (George Godwin Ltd, and the Plastics and Rubber Institute, London, 1981) (Second Edition) p. 340.

    Google Scholar 

  13. E. W. J. Michell andD. G. Pearson,J. Appl. Chem. Lond. 17 (1971) 171.

    Google Scholar 

  14. D. Pearson,Polymer Age 2 (11) (1971) 429.

    Google Scholar 

  15. E. W. J. Michell,Br. Polym. J. 4 (1972) 343.

    Google Scholar 

  16. E. W. J. Michell andK. Y. Ng,ibid. 12 (1980) 114.

    Google Scholar 

  17. Idem, J. Chem. Tech. Biotechnol. 32 (1982) 382.

    Google Scholar 

  18. E. W. J. Michell,J. App. Chem. Biotechnol. 25 (1975) 465.

    Google Scholar 

  19. E. W. J. Michell, D. G. Pearson andD. Youd, Lead 68 Edited Proceedings of the Third International Conference on Lead. Venice, 1968 (Pergamon Press, Oxford, 1970) pp. 421–436.

    Google Scholar 

  20. J. K. Olby,J. Inorg. Nucl. Chem. 28 (1966) 2507.

    Google Scholar 

  21. E. W. J. Michell,J. Appl. Chem. Biotechnol. 23 (1973) 273.

    Google Scholar 

  22. Idem, Br. Polym. J. 10 (1978) 131.

    Google Scholar 

  23. P. Bradt andF. L. Mohler,J. Res. Nat. Bur. Stand. 55 (1955) 323.

    Google Scholar 

  24. C. F. Bersch, M. R. Harvey andB. G. Achhammer,ibid. 60 (1958) 481.

    Google Scholar 

  25. R. R. Stromberg, S. Strauss andB. G. Achhammer,J. Polym. Sci. 35 (1959) 355.

    Google Scholar 

  26. W. C. Geddes,Rubber Chem. Technol. 40 (1967) 177.

    Google Scholar 

  27. D. Braun andR. F. Bender,Eur. Polym. J. Polym. Suppl. (1968) 269.

  28. A. Rieche, A. Grimm andH. Mucke,Kunststoffe 52 (1962), 265 (English translation inGerman Plastics 52 (1962) 4–6).

    Google Scholar 

  29. G. C. Marks, J. L. Benton andC. M. Thomas, “SCI Monograph No. 26” (Society of Chemical Industry, London, 1967) p. 204.

    Google Scholar 

  30. D. E. Winkler,J. Polym. Sci. 35 (1959) 3.

    Google Scholar 

  31. V. P. Gupta andL. E. ST. Pierre,J. Polym. Sci. Polym. Chem. Ed. 11 (1973) 1841.

    Google Scholar 

  32. Idem, J. Polym. Sci. A1 8 (1970) 37.

    Google Scholar 

  33. E. J. Arlman,J. Polym. Sci. 12 (1954) 547.

    Google Scholar 

  34. M. Imoto andT. Otsu,J. Inst. Polyt. Osaka C4 (1953) 124.

    Google Scholar 

  35. G. Talamini andG. Pezzin,Makromol. Chemie 39 (1960) 26.

    Google Scholar 

  36. A. Guyot, J. P. Benevise andY. Trambouze,J. Appl. Polym. Sci. 6 (1962) 103.

    Google Scholar 

  37. D. Druesedow andC. F. Gibbs,Modern Plast. (June 1953), 123.

  38. V. P. Gupta andL. E. St. Pierre,J. Polym. Sci.: Polym. Chem. Ed. 17 (1979) 797.

    Google Scholar 

  39. L. I. Nass, “Encyclopedia of PVC”, Vol. 1, edited by L. I. Nass (Marcel Dekker Inc, New York, 1976) Chapt. 8, pp. 271–293.

    Google Scholar 

  40. W. O. Wirth andH. Andreas,Pure Appl. Chem. 49 (1977) 627.

    Google Scholar 

  41. R. W. Starnes, “Stabilisation and Degradation of Polymers”, edited by D. L. Allora and W. L. Hawkins, (American Chemical Society, Advances in Chemistry Series, Washington DC, 1978) Vol. 169 pp. 309–323.

    Google Scholar 

  42. S. V. Kolesov, V. P. Malynskaya, A. P. Savelp'ev andK. S. Minsker,Fiz. Khim. Osn. Sint. Pererab. Polym. 1 (1976) 62.

    Google Scholar 

  43. A. H. Frye andR. W. Horst,J. Polym. Sci. 40 (1959) 419.

    Google Scholar 

  44. Idem, ibid. 45 (1960) 1.

    Google Scholar 

  45. A. H. Frye, R. W. Horst andM. A. Paliobagis,J. Polym. Sci. A2 (1964) 1801.

    Google Scholar 

  46. T. T. Nagy, B. Turcsanyi, T. Kelen andF. Tudos,Angew. Makromol. Chemie 104 (1982) 67.

    Google Scholar 

  47. E. L. White, “Encyclopedia of PVC” Vol. 2, edited by L. I. Nass, (Marcel Dekker Inc, New York, 1977) Chap. 13, pp. 643–710.

    Google Scholar 

  48. J. Menczel, J. Varga, K. Juhasz andM. Binett,Period. Polytech. Chem. Eng. 22 (3) (1978) 289.

    Google Scholar 

  49. V. P. Gupta andL. E. St. Pierre,J. Polym. Sci. Polym. Chem. Ed. 18 (1980) 1483.

    Google Scholar 

  50. C. H. Bamford andD. F. Fenton,Polymer 10 (1969) 63.

    Google Scholar 

  51. I. K. Varma andS. S. Grover,Angew Makromol. Chemie 7 (1969) 29.

    Google Scholar 

  52. Idem, ibid. 24 (1972) 35.

    Google Scholar 

  53. Idem, ibid. 38 (1974) 1.

    Google Scholar 

  54. I. C. McNeill andD. Neill,Makromol. Chemie 117 (1968) 265.

    Google Scholar 

  55. Idem, Eur. Polym. J. 6 (1970) 143.

    Google Scholar 

  56. Idem, ibid. 6 (1970) 569.

    Google Scholar 

  57. B. Dodson andI. C. McNeill,J. Polym. Sci. Polym. Chem. Ed. 14 (1976) 353.

    Google Scholar 

  58. A. Guyot, M. Bert, A. Michel andR. Spitz,J. Polym. Sci. A1 8 (1970) 1596.

    Google Scholar 

  59. A. H. K. Yousufsai, M. M. Zafar andShabih-Ul-Hasan,Eur. Polym. J. 8 (1972) 1231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michell, E.W.J. True stabilization: the behaviour of lead compounds against the thermal decomposition of polyvinyl chloride. J Mater Sci 20, 3816–3830 (1985). https://doi.org/10.1007/BF00552370

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552370

Keywords

Navigation