Skip to main content
Log in

Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3-Sn, Al2O3-Co systems

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using the multiphase equilibrium method for the measurement of contact angles, the surface and grain-boundary energies of polycrystalline Al2O3 in the temperature range of 1473 to 1923 K were determined. Linear temperature functions were obtained by extrapolation for both quantities between absolute zero and the melting point of Al2O3. The temperature dependence of the surface and grain boundary energies can be expressed as

$$\gamma _{{\rm A}l_2 O_3 } = 2.559 - 0.784 \times 10^{ - 3} T(J m^{ - 2} )$$

and

$$\gamma _{{\rm A}l_2 O_3 - Al_2 O_3 = } 1.913 - 0.611 \times 10^{ - 3} T(J m^{ - 2} )$$

respectively. The interfacial energies of Al2O3 in contact with the molten metals tin and cobalt revealed a linear dependence on temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Hodkin andM. G. Nicholas,J. Nucl. Mater. 47 (1973) 23.

    Google Scholar 

  2. P. Nikolopoulos, S. Nazaré andF. Thümmler,ibid. 71 (1977) 89.

    Google Scholar 

  3. P. Nikolopoulos andB. Schulz,ibid. 82 (1979) 172.

    Google Scholar 

  4. S. Amelinckx, N. F. Binnendijk andE. Dekeyser,Physica 19 (1953) 1173.

    Google Scholar 

  5. F. Bashfort andS. C. Adams, “An Attempt to test the theories of capillary action” (University Press, Cambridge, 1883) p. 63.

    Google Scholar 

  6. B. C. Allen, “Liquid Metals”, edited by S. Z. Beer (Dekker, New York, 1972) p. 161.

    Google Scholar 

  7. L. Zagar andW. Bernhardt, “Forschungsberichte des Landes Nord-Rheinwestfahlen”, Nr. 1733 (Westdeutscher Verlag, Köln, 1966) p. 65.

    Google Scholar 

  8. A. R. Miedema andR. Boom,Z. Metallkde. 69 (1978) 183.

    Google Scholar 

  9. W. D. Kingery,J. Amer. Ceram. Soc. 37 (1954) 42.

    Google Scholar 

  10. M. McLean andE. D. Hondros,J. Mater. Sci. 6 (1971) 19.

    Google Scholar 

  11. A. S. Skapski,Acta Metall. 4 (1956) 576.

    Google Scholar 

  12. W. D. Kingery,J. Amer. Ceram. Soc. 42 (1959) 6.

    Google Scholar 

  13. J. J. Rasmussen andR. P. Nelson,ibid. 54 (1971) 398.

    Google Scholar 

  14. R. W. Bartlett andJ. K. Hall,Amer. Ceram. Soc. Bull. 44 (1965) 444.

    Google Scholar 

  15. R. Fricke,Kolloid Z. 96 (1941) 213.

    Google Scholar 

  16. R. H. Bruce, “Science of Ceramics”, edited by G. H. Stewart (Academic, London, 1965) p. 359.

    Google Scholar 

  17. D. T. Livey andP. Murray, in 2nd Plansee Seminar, edited by F. Benesovsky, 1955 (Springer, Wien, 1956) p. 375.

    Google Scholar 

  18. R. W. Davidge andG. Tappin,J. Mater. Sci. 3 (1968) 165.

    Google Scholar 

  19. R. P. Wahi andB. Ilschner,ibid. 15 (1980) 875.

    Google Scholar 

  20. M. T. Laugier,ibid. 19 (1984) 254.

    Google Scholar 

  21. V. N. Eremenko andV. I. Nizhenko,Russ. J. Phys. Chem. 35 (1961) 638.

    Google Scholar 

  22. F. L. Harding andD. R. Rossington,J. Amer. Ceram. Soc. 53 (1970) 87.

    Google Scholar 

  23. S. K. Rhee,ibid. 55 (1972) 300.

    Google Scholar 

  24. W. M. Robertson andP. Chang, “Materials Science Research”, edited by W. W. Kriegel and H. Palmour, III (Plenum, New York, 1966) p. 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolopoulos, P. Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3-Sn, Al2O3-Co systems. J Mater Sci 20, 3993–4000 (1985). https://doi.org/10.1007/BF00552390

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552390

Keywords

Navigation