Skip to main content
Log in

Interpretation of superplastic flow in terms of a threshold stress

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In several recent experiments on the Zn-22% Al eutectoid and the Pb-62% Sn eutectic, a sigmoidal relationship between stress and strain rate is noted and the mechanical behaviour has been divided into three regions: low-stress region (region I), intermediatestress region (the superplastic region or region II), and high-stress region (region III). In region II, the stress exponent,n, is ≃ 2 and the apparent activation energy,Q, is close to grain-boundary diffusion,Q gb, but in both regions I and III the stress exponent and the activation energy increase (n > 2 andQ >Q gb). Analysis of the experimental data of the two superplastic alloys suggests that the transition in behaviour between region II and region I may not necessarily reflect a change in deformation process but can arise from the presence of a threshold stress which decreases strongly with increasing temperature. Based on consideration of various possible threshold stress processes during superplastic flow, it seems most likely that a threshold stress which depends strongly on temperature may result from impurity atom segregation at boundaries and their interaction with boundary dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Bird, A. K. Mukherjee andJ. E. Dorn, in “Quantitative Relations Between Properties and Microstructure”, edited by D. G. Brandon and A. Rosen (Israel Universities Press, Jerusalem, 1969) p. 255.

    Google Scholar 

  2. F. A. Mohamed andT. G. Langdon,Acta. Metall. 23 (1975) 117.

    Google Scholar 

  3. F. A. Mohamed, S. A. Shei andT. G. Langdon,ibid. 23 (1975) 1443.

    Google Scholar 

  4. F. A. Mohamed andT. G. Langdon,Phil. Mag. 32 (1975) 697.

    Google Scholar 

  5. G. Rai andN. J. Grant,Met. Trans. 6A (1975) 385.

    Google Scholar 

  6. A. Arieli andA. K. Mukherjee,Scripta Metall. 13 (1979) 331.

    Google Scholar 

  7. D. Grivas, Report No. LBL-7375, Lawrence Berkeley Laboratory, University of California, Berkeley (1978).

    Google Scholar 

  8. S. H. Vale, D. J. Eastgate andP. M. Hazzledine,Scripta Metall. 13 (1979) 1157.

    Google Scholar 

  9. D. W. Livesey andN. Ridley,ibid. 16 (1982) 165.

    Google Scholar 

  10. F. A. Mohamed andT. G. Langdon,Acta. Metall. 29 (1981) 911.

    Google Scholar 

  11. R. H. Johnson,Met. Rev. 15 (1970) 115.

    Google Scholar 

  12. A. V. Karim andW. A. Backofen,Met. Trans. ASM 3 (1972) 709.

    Google Scholar 

  13. B. Burton,Scripta Metall. 5 (1971) 669.

    Google Scholar 

  14. M. F. Ashby andR. A. Verrall,Acta Metall 21 (1973) 148.

    Google Scholar 

  15. J. H. Gittus,J. Eng. Mater. Technol. 99 (1977) 244.

    Google Scholar 

  16. T. G. Langdon andF. A. Mohamed,Scripta Metall. 11 (1977) 575.

    Google Scholar 

  17. Idem, J. Aust. Inst. Met. 22 (1977) 189.

    Google Scholar 

  18. R. C. Gifkins,Met. Trans. 7A (1976) 1225.

    Google Scholar 

  19. Idem, J. Mater. Sci. 13 (1978) 1928.

    Google Scholar 

  20. C. I. Smith, B. Norgate andN. Ridley,Scripta Metall. 8 (1974) 159.

    Google Scholar 

  21. F. A. Mohamed andT. J. Ginter,J. Mater. Sci. 16 (1981) 2890.

    Google Scholar 

  22. F. A. Mohamed,ibid. 17 (1982) 1381.

    Google Scholar 

  23. H. Ishikawa, F. A. Mohamed andT. G. Langdon,Phil. Mag. 32 (1979) 269.

    Google Scholar 

  24. A. Ball andM. M. Hutchinson,Met. Sci. J. 3 (1969) 1.

    Google Scholar 

  25. A. K. Mukherjee,Mater. Sci. Eng. 8 (1971) 83.

    Google Scholar 

  26. M. F. Ashby,Scripta Metall. 3 (1969) 837.

    Google Scholar 

  27. Idem, Surface Sci. 31 (1972) 498.

    Google Scholar 

  28. C. A. P. Horton,Scripta Metall. 8 (1974) 1.

    Google Scholar 

  29. J. Friedel, “Dislocations” (Pergamon Press, Oxford, 1964) Ch. 16.

    Google Scholar 

  30. J. Weertman.Acta Metall. 25 (1977) 1393.

    Google Scholar 

  31. Idem, Trans. Amer. Inst. Min. Eng. 218 (1960) 207.

    Google Scholar 

  32. J. D. Eshelby,Phil. Mag. 6 (1961) 953.

    Google Scholar 

  33. F. R. N. Nabarro, Report of a Conference on Strength on Solids (The Physical Society, London, 1948) p. 78.

    Google Scholar 

  34. C. Herring,J. Appl. Phys. 21 (1950) 437.

    Google Scholar 

  35. R. L. Coble,Ibid. 34 (1963) 1679.

    Google Scholar 

  36. B. Burton, “Diffusional Creep on Poly crystalline Material” (Trans. Tech. Publications, Bay Village, Ohio, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, F.A. Interpretation of superplastic flow in terms of a threshold stress. J Mater Sci 18, 582–592 (1983). https://doi.org/10.1007/BF00560647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00560647

Keywords

Navigation